Skip to main content

Advertisement

Log in

Thermal error prediction of machine tool spindle using segment fusion LSSVM

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

A Correction to this article was published on 10 June 2021

This article has been updated

Abstract

The key temperature points are the input variables of the thermal error model for prediction and compensation of thermal errors for precision CNC machine tools. However, the revealed time-varying characteristics of the key temperature points may jeopardize the robust prediction. To this end, the segment fusion least squares support vector machine (SF-LSSVM) thermal error modeling method is proposed. Firstly, the temperature data and thermal error data are divided into different segments according to time. Then, using the LSSVM with excellent nonlinear mapping capabilities as the basic model, the sub LSSVM thermal error model building and the corresponding key temperature points selection in each segment are fulfilled with genetic algorithm (GA) in a wrapper manner to preserve the corresponding local prediction characteristics. Finally, pick some of or all the sub LSSVM thermal error models to fuse together as the final thermal error model which may incorporate both the local and global prediction characteristics. The modeling and prediction experiment results on the spindle thermal error of a horizontal machining center demonstrate that the mean root-mean-square error (RMSE) on 5 spindle speeds after compensation is only 3.1 μm. Comparing with two traditional thermal error models, the prediction performance of the present model is improved by up to 51%. This research casts new light on both the mechanism of key temperature points and the prediction method of thermal errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data and materials generated or analyzed during this study cannot be shared at this time as the data also forms part of an ongoing study.

Change history

References

  1. Bryan J (1990) International status of thermal error research. CIRP Ann Manuf Technol 39(2):645–656

    Article  Google Scholar 

  2. Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791

    Article  Google Scholar 

  3. Li Y, Zhao W, Lan S, Ni J, Wu W, Lu B (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95(8):20–38

    Article  Google Scholar 

  4. Yin Q, Tan F, Chen H, Yin G (2019) Spindle thermal error modeling based on selective ensemble BP neural networks. Int J Adv Manuf Technol 101(5-8):1699–1713

    Article  Google Scholar 

  5. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools — a review Part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  6. Mayr J, Blaser P, Ryser A, Hernandez-Becerro P (2018) An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates. CIRP Ann Manuf Technol 67(1):551–554

    Article  Google Scholar 

  7. Woźniak A, Męczyńska K (2020) Measurement hysteresis of touch-trigger probes for CNC machine tools. Measurement 156:107568

    Article  Google Scholar 

  8. Tan F, Deng C, Xiao H, Luo J, Zhao S (2020) A wrapper approach-based key temperature point selection and thermal error modeling method. Int J Adv Manuf Technol 106(3-4):907–920

    Article  Google Scholar 

  9. Zapłata J, Pajor M (2019) Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precis Eng 60:160–166

    Article  Google Scholar 

  10. Bossmanns B, Tu JF (1999) A thermal model for high speed motorized spindles. Int J Mach Tools Manuf 39:1345–1366

    Article  Google Scholar 

  11. Holkup T, Cao H, Kolá P, Altintas Y, Zeleny J (2010) Thermo-mechanical model of spindles. CIRP Ann Manuf Technol 59(1):365–368

    Article  Google Scholar 

  12. Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393

    Article  Google Scholar 

  13. Liu J, Ma C, Wang S, Wang S, Yang B, Shi H (2019) Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis. Mech Syst Signal Pr 121:471–495

    Article  Google Scholar 

  14. Liu J, Ma C, Wang S, Wang S, Yang B (2019) Thermal contact resistance between bearing inner ring and shaft journal. Int J Therm Sci 138:521–535

    Article  Google Scholar 

  15. Tan F, Wang L, Yin M, Yin G (2019) Obtaining more accurate convective heat transfer coefficients in thermal analysis of spindle using surrogate assisted differential evolution method. Appl Therm Eng 149:1335–1344

    Article  Google Scholar 

  16. Tan F, Yin Q, Dong G, Xie L, Yin G (2017) An optimal convective heat transfer coefficient calculation method in thermal analysis of spindle system. Int J Adv Manuf Technol 91(5-8):2549–2560

    Article  Google Scholar 

  17. Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127

    Article  Google Scholar 

  18. Liu J, Ma C, Wang S (2020) Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools. Mech Syst Signal Pr 138:106538

    Article  Google Scholar 

  19. Xiang S, Yao X, Du Z, Yang J (2018) Dynamic linearization modeling approach for spindle thermal errors of machine tools. Mechatronics 53:215–228

    Article  Google Scholar 

  20. Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27:158–168

    Article  Google Scholar 

  21. Yang J, Shi H, Feng B, Zhao L, Ma C, Mei X (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Technol 77(5-8):1005–1017

    Article  Google Scholar 

  22. Liu Q, Yan J, Pham DT, Zhou Z, Xu W, Wei Q, Ji C (2016) Identification and optimal selection of temperature-sensitive measuring points of thermal error compensation on a heavy-duty machine tool. Int J Adv Manuf Technol 85(1-4):345–353

    Article  Google Scholar 

  23. Tsai P, Cheng C, Chen W, Su S (2020) Sensor placement methodology for spindle thermal compensation of machine tools. Int J Adv Manuf Technol 106(11-12):5429–5440

    Article  Google Scholar 

  24. Hey J, Sing TC, Liang TJ (2018) Sensor Selection Method to Accurately Model the Thermal Error in a Spindle Motor. IEEE T Ind Inform 14(7):2925–2931

    Article  Google Scholar 

  25. Huang S (1995) Analysis of a model to forecast thermal deformation of ball screw feed drive systems. Int J Mach Tools Manuf 35(8):1099–1104

    Article  Google Scholar 

  26. Ramesh R, Mannan MA, Poo AN (2002) Support vector machines model for classification of thermal error in machine tools. Int J Adv Manuf Technol 20(2):114–120

    Article  Google Scholar 

  27. Kang Y, Chang C, Huang Y, Hsu C, Nieh I (2007) Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools. Int J Mach Tools Manuf 47(2):376–387

    Article  Google Scholar 

  28. Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2015) Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera. Appl Math Model 39(7):1837–1852

    Article  Google Scholar 

  29. Miao E, Liu Y, Liu H, Gao Z, Li W (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Mach Tools Manuf 97:50–59

    Article  Google Scholar 

  30. Liu H, Miao E, Wei X, Zhuang X (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. Int J Mach Tools Manuf 113:35–48

    Article  Google Scholar 

  31. 230-3 ISO (2007) Test code for machine tools part 3: determination of thermal effects. ISO copyright office, Geneva

    Google Scholar 

  32. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific

Download references

Funding

This research was financially supported by the Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0540), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202000614), and the National Natural Science Foundation of China (51905065).

Author information

Authors and Affiliations

Authors

Contributions

Feng Tan: conceptualization, methodology, software, writing—original draft. Guofu Yin: supervision, writing—review and editing. Kai Zheng: data curation, visualization, investigation, software, validation. Xin Wang: investigation, validation.

Corresponding author

Correspondence to Feng Tan.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Author's affiliations have been updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, F., Yin, G., Zheng, K. et al. Thermal error prediction of machine tool spindle using segment fusion LSSVM. Int J Adv Manuf Technol 116, 99–114 (2021). https://doi.org/10.1007/s00170-021-07066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07066-7

Keywords

Navigation