Skip to main content
Log in

Study on weld seam surface deposits of CuSi3 CMT brazing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

CuSi3 CMT brazing is an advanced welding technology widely used in automotive industry. But dark deposits defect was found on the weld seam surface. SEM and EDS analyses were operated in this paper and this surface was found to contain three areas: area A with silicates thin film and Cu, area B with MnO·SiO2 silicates, and area C with CuO. And thus the formation mechanism of surface deposits, which was mainly attributed to the generation and uneven distribution of large amount of dark CuO, was proposed. Based on the mechanism of the deposit formation, four methods were processed to suppress the surface dark deposits. Ar + 2%O2 would prevent the generation of dark deposits because of enhanced cathode crushing effect. Besides, delay gas protection time, keep torch travel angle positive, and maintain a low heat input would be benefit for suppressing dark deposits on the weld seam surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rui-feng L, Zhi-shui Y, Kai Q (2006) Interfacial structure and joint strengthening in arc brazed galvanized steels with copper based filler. T NONFERR METAL SOC 16(2):397–401. doi:10.1016/s1003-6326(06)60068-x

    Article  Google Scholar 

  2. Guimaraes AS, Mendes MT, Costa HRM, Da Silva Mchado J, Kuromoto NK (2007) An evaluation of the behaviour of a zinc layer on a galvanised sheet, joined by MIG brazing. Weld Int 21(4):271–278. doi:10.1080/09507110701411908

    Article  Google Scholar 

  3. Chovet C, Guiheux S (2006) Possibilities offered by MIG and TIG brazing of galvanized ultra high strength steels for automotive applications. La Metallurgia Italiana, pp 47–54

  4. Gatzen M, Radel T, Thomy C, Vollertsen F (2016) Wetting and solidification characteristics of aluminium on zinc coated steel in laser welding and brazing. J MATER PROCESS TECH 238:352–360. doi:10.1016/j.jmatprotec.2016.07.026

    Article  Google Scholar 

  5. Quintino L, Pimenta G, Iordachescu D, Miranda RM, Pépe NV (2006) MIG brazing of galvanized thin sheet joints for automotive industry. Mater Manuf Process 21:63–73. doi:10.1081/amp-200060621

    Article  Google Scholar 

  6. Zhang Y, Huang J, Chi H, Cheng N, Cheng Z, Chen S (2015) Study on welding–brazing of copper and stainless steel using tungsten/metal gas suspended arc welding. Mater Lett 156:7–9. doi:10.1016/j.matlet.2015.04.128

    Article  Google Scholar 

  7. Li J, Li H, Wei H, Ni Y (2016) Effect of pulse on pulse frequency on welding process and welding quality of pulse on pulse MIG welding-brazing of aluminum alloys to stainless steel. INT J ADV MANUF TECH. doi:10.1007/s00170-016-8369-y

    Google Scholar 

  8. Gawrysiuk W (2006) Technology of the arc-braze welding process. Recommendations and examples of industrial applications. Weld Int 20(1):10–16. doi:10.1533/wint.2006.3536

    Article  Google Scholar 

  9. Lu F, Lu B, Tang X, Yao S (2007) Study of influencing factors and joint performance of laser brazing on zinc-coated steel plate. INT J ADV MANUF TECH 37(9–10):961–965. doi:10.1007/s00170-007-1035-7

    Google Scholar 

  10. Yu ZS, Li RF, Zhou FM, Wu MF, Qi K, Qian YY (2013) Joint evolution and strengthening mechanisms in arc brazed galvanised steels with Cu97Si3filler. Mater Sci Technol 20(11):1479–1483. doi:10.1179/026708304225022133

    Article  Google Scholar 

  11. Reimann W, Dobler M, Goede M, Schmidt M, Dilger K (2016) Three-beam laser brazing of zinc-coated steel. Int J Adv Manuf Tech 1–12. doi:10.1007/s00170-016-9361-2

  12. Yu Z-s, Li R-F, Qi K (2006) Growth behavior of interfacial compounds in galvanized steel joints with CuSi3 filler under arc brazing. T NONFERR METAL SOC 16(6):1391–1396. doi:10.1016/s1003-6326(07)60026-0

    Article  Google Scholar 

  13. Klocke F, Frank S (2013) Surface deposits in laser brazing. SCI TECHNOL WELD JOI 18(1):62–69. doi:10.1179/1362171812y.0000000075

    Article  Google Scholar 

  14. Iordachescu D, Quintino L, Miranda R, Pimenta G (2006) Influence of shielding gases and process parameters on metal transfer and bead shape in MIG brazed joints of the thin zinc coated steel plates. MATER DESIGN 27(5):381–390. doi:10.1016/j.matdes.2004.11.010

    Article  Google Scholar 

  15. Jin Y, Li R, Yu Z, Wang Y (2016) Microstructure and mechanical properties of plasma arc brazed AISI 304L stainless steel and galvanized steel plates. J Mater Eng Perform 25(4):1327–1335. doi:10.1007/s11665-016-1972-0

    Article  Google Scholar 

  16. Rohde H, Katic J, Paschold R (ESAB Gmbh Solingen) (2000) ESAB pulsed gas-shielded metal. Svetsaren 4

  17. Kai M, Zhishui Y, Peilei Z, Yunlong L, Hua Y, Chonggui L, Xiaopeng L (2014) Influence of wire feeding speed on laser brazing zinc-coated steel with Cu-based filler metal. INT J ADV MANUF TECH 76(5–8):1333–1342. doi:10.1007/s00170-014-6347-9

    Google Scholar 

  18. Makwana P, Shome M, Goecke S-F, De A (2016) Gas metal arc brazing of galvannealed steel sheets. SCI TECHNOL WELD JOI 21(7):600–606. doi:10.1080/13621718.2016.1145420

    Article  Google Scholar 

  19. Rangel AF, Matlakhova LA, Paranhos RPDR, Matlakhov AN (2006) Evaluation of MIG-brazing welded joint by means of metallographic techniques. Weld Int 20(11):889–893. doi:10.1533/wint.2006.3664

    Article  Google Scholar 

  20. Varol F, Ozsarac U, Aslanlar S, Onat A, Ekici M, Ferik E (2015) Influence of current intensity and heat input in MIG-brazed joints of DP 600 thin zinc coated steel plates. Acta Phys Pol A 127(4):968–971. doi:10.12693/APhysPolA.127.968

    Article  Google Scholar 

  21. Chen Y, Feng X, Li L (2007) Numerical simulation of filler metal droplets spreading in laser brazing. Chin Opt Lett 11(5):654–656

    Google Scholar 

  22. Joensson P, Murphy A, Szekely J (1995) The influence of oxygen additions on argon-shielded gas metal arc welding processes. Weld J 74(2):S48–S58

    Google Scholar 

  23. Hasegawa M (2014) Ellingham diagram, pp 507–516. doi:10.1016/b978-0-08-096986-2.00032-1

  24. Zhang W (1995) The basic principles of welding metallurgy. China Machine, Beijing

  25. Zhu YF (2003) Influence of purity on copper oxidation, pp 1–164

  26. Lancaster JF (1984) The physics of welding. Phys Technol 15:73–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueming Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, G., Hua, X., Wu, D. et al. Study on weld seam surface deposits of CuSi3 CMT brazing. Int J Adv Manuf Technol 92, 2735–2742 (2017). https://doi.org/10.1007/s00170-017-0349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0349-3

Keywords

Navigation