Skip to main content

Advertisement

Log in

Optimization of plasma surface modification parameter for fabricating a hot embossing mold with high surface finish

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hot embossing is a low-cost processing approach for polymer-based microfabrication. However, the time and cost are two major problems in the mold industry to produce a precision hot embossing mold with high surface finish for the pilot run in the new product development phase. This study investigates the optimum process parameters of plasma surface modification to fabricate a precision micro-hot-embossing mold without the use of release agent. The first silicone rubber mold with the lowest surface roughness can be utilized for fabricating a precision hot embossing mold using rapid tooling technology. It was found that the dominant factor affecting the surface roughness of the first silicone rubber mold is the plasma-arc distance. The optimum process parameters to fabricate a hot embossing mold with high surface finish are plasma power of 70 W, treatment time of 3 min, gas flow rate of 25 sccm, and plasma-arc distance of 40 mm. The replication rates for depth and width of the fabricated Al-filled epoxy resin mold about 92.4 and 98.1% can be obtained using the optimum process parameters. The improvement rate of the surface roughness of the fabricated Al-filled epoxy resin mold about 39.4% can be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park IB, Ha YM, Lee SH (2010) Cross-section segmentation for improving the shape accuracy of microstructure array in projection microstereolithography. Int J Adv Manuf Technol 46(1):151–161

    Article  Google Scholar 

  2. Thian SCH, Fuh JYH, Wong YS, Loh HT, Gian PW, Tang Y (2008) Fabrication of microfluidic channel utilizing silicone rubber with vacuum casting. Microsyst Technol 14:1125–1135

    Article  Google Scholar 

  3. Kuo CC, Lin ZY (2011) Development of bridge tooling for fabricating mold inserts of aspheric optical lens. Mater Werkst 42:1019–1024

    Article  Google Scholar 

  4. Zhang J, Sahli M, Gelin JC, Barriere T (2015) Rapid replication of metal microstructures using micro-powder hot embossing process. Int J Adv Manuf Technol 77(9):2135–2149

    Article  Google Scholar 

  5. Kuo CC, Hsu HJ (2013) Development and application of hybrid mold with microfeatures in micro-hot embossing. Mater Manuf Process 28(11):1203–1208

    Article  Google Scholar 

  6. Kuo CC (2013) Development of green rapid tooling technologies. Indian J Eng Mater Sci 20(4):245–251

    Article  Google Scholar 

  7. Kuo CC, Lin ZY (2012) Rapid manufacturing of plastic aspheric optical lens. Mater Werkst 43:495–502

    Article  Google Scholar 

  8. Kuo CC (2012) A simple and cost-effective method for fabricating epoxy-based composites mold inserts. Mater Manuf Process 27:383–388

    Article  Google Scholar 

  9. Kim JH, Kousaka H, Umehara N, Shimada M, Hasegawa M (2012) Surface modification of surface wave-excited plasma-treated chloride-isobutene rubber for adhesion reduction. Mater Manuf Process 27:1257–1261

    Article  Google Scholar 

  10. Kumruoğlu LC, Ozel A (2010) Surface modification of AISI 4140 steel using electrolytic plasma thermocyclic treatment. Mater Manuf Process 25:923–931

    Article  Google Scholar 

  11. Guo L, Liu X, Gao J, Yang J, Guo T, Zhu Y (2010) Effect of surface modifications on the bonding strength of titanium–porcelain. Mater Manuf Process 25:710–717

    Article  Google Scholar 

  12. Kim YW (2010) Surface modification of Ti dental implants by grit-blasting and micro-arc oxidation. Mater Manuf Process 25:307–310

    Article  Google Scholar 

  13. Kumruoglu LC, Becerik DA, Ozel A, Mimaroglu A (2009) Surface modification of medium carbon steel by using electrolytic plasma thermocyclic treatment. Mater Manuf Process 24:781–785

    Article  Google Scholar 

  14. Arrighi S, Borgia V (2009) Surface modifications of flint tools and their functional meaning. Mater Manuf Process 24:922–927

    Article  Google Scholar 

  15. Kuo CC, Wang YJ (2014) Development of a micro-hot embossing mold with high replication fidelity using surface modification. Mater Manuf Process 29(9):1101–1110

    Article  Google Scholar 

  16. Morent R, Geyter ND, Leys C (2008) Effects of operating parameters on plasma-induced PET surface treatment. Nucl Inst Methods Phys Res B 266:3081–3085

    Article  Google Scholar 

  17. Sartori S, Rechichi A, Vozzi G, Acunto MD, Heine E, Giusti P, Ciardelli G (2008) Surface modification of a synthetic polyurethane by plasma glow discharge: preparation and characterization of bioactive monolayers. React Funct Polym 68:809–821

    Article  Google Scholar 

  18. Wang CX, Qiu YP (2007) Two sided modification of wool fabrics by atmospheric pressure plasma jet: influence of processing parameters on plasma penetration. Surf Coat Technol 201:6273–6277

    Article  Google Scholar 

  19. Sarikaya O (2005) Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process. Surf Coat Technol 190:388–393

    Article  Google Scholar 

  20. Noeske M, Degenhardt J, Strudthoff S, Lommatzsch U (2004) Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion. Int J Adhes Adhes 24:171–177

    Article  Google Scholar 

  21. Lin YC, Hocheng H, Fang WL, Chen R (2006) Fabrication and fatigue testing of an electrostatically driven microcantilever beam. Mater Manuf Process 21:75–80

    Article  Google Scholar 

  22. Zhang X, Qu N, Li H, Xu Z (2015) Investigation of machining accuracy of micro-dimples fabricated by modified microscale pattern transfer without photolithography of substrates. Int J Adv Manuf Technol 81(Issue 9):1475–1485

    Article  Google Scholar 

  23. Wentai S, Zhidong L, Mingbong Q, Zongjun T (2016) Wire tension in high-speed wire electrical discharge machining. Int J Adv Manuf Technol 82(Issue 1):379–389

    Article  Google Scholar 

  24. Umbrello D, Rotella G, Matsumura T, Musha Y (2015) Evaluation of microstructural changes by X-ray diffraction peak profile and focused ion beam/scanning ion microscope analysis. Int J Adv Manuf Technol 77(Issue 5):1465–1474

    Article  Google Scholar 

  25. Xu L, Pan Y (2014) Electrochemical electrochemical micromachining using vibrating tool electrode. Int J Adv Manuf Technol 75(Issue 5):645–650

    Article  Google Scholar 

  26. Leksakul K, Limcharoen A (2014) Central composite designs coupled with simulation techniques for optimizing RIE process. Int J Adv Manuf Technol 70(Issue 5):1219–1225

    Article  Google Scholar 

  27. Kou Z, Wan Y, Liu Z, Cai Y, Liang X (2015) Deformation control in micro-milling of thin-walled structures. Int J Adv Manuf Technol 81(Issue 5):967–974

    Article  Google Scholar 

  28. Fu X, Zhang Q, Gao L, Liu Q, Wang K, Zhang YW (2016) A novel micro-EDM—piezoelectric self-adaptive micro-EDM. Int J Adv Manuf Technol 85(Issue 1):817–824

    Article  Google Scholar 

  29. Giorleo L, Ceretti E, Giardini C (2016) Optimization of laser micromachining process for biomedical device fabrication. Int J Adv Manuf Technol 82(Issue 5):901–907

    Article  Google Scholar 

  30. Xu B, Wu XY, Ling SQ, Luo F, Du CL, Sun XQ (2013) Fabrication of 3D metal micro-mold based on femtosecond laser cutting and micro-electric resistance slip welding. Int J Adv Manuf Technol 66(Issue 5):601–609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chil-Chyuan Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CC., Wang, YJ. Optimization of plasma surface modification parameter for fabricating a hot embossing mold with high surface finish. Int J Adv Manuf Technol 91, 3363–3369 (2017). https://doi.org/10.1007/s00170-017-0027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0027-5

Keywords

Navigation