Skip to main content
Log in

Heat treatment of 34CrNiMo6 steel used for mooring shackles

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study presents an experimental investigation of the heat treatment of 34CrNiMo6 steel used for shackles. Indeed, industrial requirements impose specific mechanical properties to the materials which constitute shackles. The aim of this work is to propose a method to relate heat treatment parameters and the resulting mechanical properties. Instrumented cylindrical specimen are submitted to successive heat treatments under conditions representative of the industrial process. Core and surface temperatures are recorded during cooling. Metallographic observations and hardness measurements are performed after each heat treatment, in order to characterise the final phase distribution and mechanical properties. A model based on the one-dimensional heat conduction equation in cylindrical coordinates is developed within an implicit scheme, taking into account the temperature-dependent phase transformations. The results firstly provide a validation of the input data using specific dilatometric experiments, which then leads to a comparison between the experimental and numerical evolution of the core temperature under each cooling condition, as well as the prediction of the phase volume fractions and the resulting hardness. It is shown that the proposed approach yields a very good representation of the material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABS (2014) Certification of offshore mooring chain. Guide. American Bureau of Shipping, Houston, TX, pp 1–39

    Google Scholar 

  2. Cochet J, Thuillier S, Manach P-Y, Decultot N (2016). In: International Journal of Advanced Manufacturing Technology, pp 1–19

  3. Boyer HE (1984) Practical heat treating. ASM International

  4. Huiping L, Guoqun Z, Shanting N, Chuanzhen H (2007) J Mater Sci Eng A:705–714

  5. Hughes P, Flores W (2010) The effects of large scale forgings and heat treatment on the mechanical performance of mooring connectors. In: 2010 Offshore Technology Conference. Society of Petroleum Engineers, pp 1–12

  6. Rajeev PT, Jin L, Farris TN, Chandrasekar S (2009) J ASTM Int 6(5):102095

    Article  Google Scholar 

  7. Tomita Y, Okabayashi K (1985) Metall Trans A 16(1):73–82

    Article  Google Scholar 

  8. Bain EC, Grossmann MA (1971) Principles of heat treatment—fifth edition, 5th edn. American Society for Metals, p 302

  9. Scheil E (1935) Arch Eisenhuttenwes 8:565–567

    Google Scholar 

  10. Agarwal PK, Brimacombe JK (1981) Metall Trans B 12(1):121–133

    Article  Google Scholar 

  11. Fernandes FMB, Denis S, Simon A (1985) Mater Sci Technol 1(10):838– 844

    Article  Google Scholar 

  12. Hultgren A (1947). Trans Am Soc Met 39:915–1005

    Google Scholar 

  13. Hamouda AMS, Sulaiman S, Lau CK (2001) J Mater Process Technol Part 2: Int Conf Adv Mater Process Technol 119(1–3):354–360

    Article  Google Scholar 

  14. Smoljan B (2006) J Mater Process Technol Achiev Mech Mater Eng 175(1–3):393–397

    Article  Google Scholar 

  15. Carlone P, Palazzo GS, Pasquino R (2010) Comput Math Appl 59(1):585–594

    Article  MathSciNet  Google Scholar 

  16. Eshraghi Kakhki M, Kermanpur A, Golozar MA (2009) Model Simul Mater Sci Eng 17(4):045007

    Article  Google Scholar 

  17. Şimşir C, Gür CH (2008) J Mater Process Technol 207(1):211–221

    Google Scholar 

  18. Hippchen P, Lipp A, Grass H, Craighero P, Fleischer M, Merklein M (2016) J Mater Process Technol Hot Stamping 228:59–67

    Article  Google Scholar 

  19. Ariza EA, Martorano MA, de Lima NB, Tschiptschin AP (2014) ISIJ Int 54(6):1396–1405

    Article  Google Scholar 

  20. George F, Voort V (1984) Metallography, principles and practice. ASM International

  21. Fernandes FMB (1985) Modélisation et calcul de l’évolution de la température et de la microstructure au cours du refroidissement continu des aciers. PhD thesis. Lorraine: Institut National Polytechnique de Lorraine, p 177

  22. Jablonka A, Harste K, Schwerdtfeger K (1991) Steel Res 62(1):24–33

    Article  Google Scholar 

  23. Roberts CS (1953) Trans. AIME 197(2):203–204

    Google Scholar 

  24. Banerjee B (2007) Int J Solids Struct 44(3):834–859

    Article  Google Scholar 

  25. Krielaart GP, Brakman CM, Van der Zwaag S (1996) J Mater Sci 31(6):1501–1508

    Article  Google Scholar 

  26. Totten GE (2002) Handbook of residual stress and deformation of steel, p 496

    Google Scholar 

  27. Schröder R. (1985) Mater Sci Technol 1(10):754–764

    Article  Google Scholar 

  28. Shelton SM (1934) Bur Stand J Res 12:441–450

    Article  Google Scholar 

  29. USDD (1987) Military standardization handbook: metallic materials and elements for aerospace vehicle structures. United States Department of Defense

  30. Wilzer J, Lüdtke F, Weber S, Theisen W (2013) J Mater Sci 48(24):8483–8492

    Article  Google Scholar 

  31. Pietzsch R, Brzoza M, Kaymak Y, Specht E, Bertram A (2007) J Appl Mech 74(3):427–437

    Article  Google Scholar 

  32. Ataollah J (2008) Influence of machining on the surface integrity and fatigue strength of 34CrNiMo6 steel. PhD thesis. University of Leoben, Austria, p 143

    Google Scholar 

  33. Vander Voort GF (1991) Atlas of time-temperature diagrams for irons and steels. ASM International, p 803

  34. Pumphrey WI, Jones FW (1948) ISIJ Int 159:137–144

    Google Scholar 

  35. Han HN, Park SH (2001) Mater Sci Technol 17:721–726

    Google Scholar 

  36. Koistinen DP, Marburger RE (1959) Acta Metall 7(1):59–60

    Article  Google Scholar 

  37. Şimşir C, Gür CH (2009) J ASTM Int 6(2):JAI101766

    Google Scholar 

  38. Murry G (1998) Techniques de l’ingénieur Traitements thermiques des métaux: généralités base documentaire: TIB500DUO. (ref. article: m1115)

  39. Touloukian YS (1970) A compressive compilation of data

  40. Maynier Ph, Dollet J, Bastien P (1978) Metall Soc AIME:163–178

  41. Trzaska J, Jagiełło A, Dobrzański LA (2009) Arch Mater Sci Eng 39(1):13–20

    Google Scholar 

  42. Van Bohemen SMC (2009) Sietsma, J. Mater Sci Technol 25(8):1009–1012

    Article  Google Scholar 

  43. Bhadeshia HKDH, Christian JW (1990) Metall Trans A 21(3):767–797

    Article  Google Scholar 

  44. Ali A, Ahmed M, Hashmi FH, Khan AQ (1993) Metall Trans A 24(10):2145–2150

    Article  Google Scholar 

  45. Zakerinia H, Kermanpur A, Najafizadeh A (2009) IJISSI

  46. Walton HW (1999) Heat treating 1998: Proceedings of the 18th conference. ASM International, p 608

  47. Wang KF, Chandrasekar S, Yang HTY (1993) J Manuf Sci Eng 115(1):124–138

    Google Scholar 

  48. Durand-Charre M (2013) Microstructure of steels and cast irons. Springer Sci Business Media, p 407

  49. Totten GE (2007) Steel heat treatment: metallurgy and technologies, vol 1. crc Press

  50. Necati Ozisik M (1993) Heat conduction. Wiley, p 716

  51. Liscic B, Tensi HM, Canale LCF, Totten GE (2010) Quenching theory and technology. CRC Press

  52. Kim HK, Oh SI (2001) J Mater Process Technol 112(2–3):157–165

    Article  Google Scholar 

  53. Bamberger M, Prinz B (1986) Mater Sci Technol 2(4):410–415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thuillier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cochet, J., Thuillier, S., Loulou, T. et al. Heat treatment of 34CrNiMo6 steel used for mooring shackles. Int J Adv Manuf Technol 91, 2329–2346 (2017). https://doi.org/10.1007/s00170-016-9951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9951-z

Keywords

Navigation