Skip to main content
Log in

Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Understanding the physics of chip formation in machining operations is often difficult due to the complexity of the phenomena involved, such as the extreme and complex loading conditions that occur in the cutting zone. In order to model the machining process, it is necessary to use a constitutive behavior law that is capable of reproducing as accurately as possible the behavior of the material under these extreme conditions. In this context, this paper presents a study of the mechanical behavior of the Ti17 titanium alloy at high strain rates and high temperatures. This has been achieved by undertaking compression and shear tests over a wide range of strain rates (from 10−1 s−1 to 100 s−1) and temperatures (from 25 to 800C). The results show that the Ti17 alloy is sensitive to strain rate, especially for strain rates greater than 1 s−1. In addition, the alloy retains good mechanical properties at high temperature (up to 500C). Based on the experimental results, the parameter of the Johnson-Cook constitutive equation have been identified using the inverse method. Some weaknesses in the model have been highlighted after the identification phase, especially in terms of the m and C parameters. A modification of the model has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abukhshim N, Mativenga P, Sheikh M (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46(7–8):782–800

    Article  Google Scholar 

  2. Ayed Y, Robert C, Germain G, Ammar A (2016) Development of a numerical model for the understanding of the chip formation in high-pressure water-jet assisted machining. Finite Elem Anal Des 108:1–8

    Article  Google Scholar 

  3. Baker M, Rosler J, Siemers C (2003) The influence of thermal conductivity on segmented chip formation. Comput Mater Sci 26:175–182

    Article  Google Scholar 

  4. Braham-Bouchnak T (2010) Etude du comportement en sollicitations extrêmes et l’usinabilité d’un nouvel alliage de titane aéronautique : le ti555-3. Ph.D. thesis, ENSAM

  5. Brown S (1987) An internal variable constitutive model fir the hot working of metals. Ph.D. thesis, MIT

  6. Cadoni E, Fenu L, Forni D (2012) Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars. Construct Build Mater 35:399–407

    Article  Google Scholar 

  7. Calamaz M, Coupard D, Girot F (2008) A new material model for 2d numerical simulation of serrated chip formation when machining titanium alloy ti-6al-4v. Int J Mach Tools Manuf 48(3–4):275–288

    Article  Google Scholar 

  8. Changeux B (2001) Loi de comportement pour l’usinage. Localisation de la déformation et aspects microstructuraux. Ph.D. thesis, ENSAM

  9. Clausen A, Borvik T, Hopperstad O, Benallal A (2004) Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Mater Sci Eng A 364(1–2):260–272

    Article  Google Scholar 

  10. Ducobu F, Riviere-Lorphevre E, Filippi E (2016) Material constitutive model and chip separation criterion influence on the modeling of ti6al4v machining with experimental validation in strictly orthogonal cutting condition. Int J Mech Sci 107:136–149

    Article  Google Scholar 

  11. Habak M (2006) Etude de l’influence de la microstructure et des paramètres de coupe sur le comportement en tournage dur de l’acier roulement 100cr6. Ph.D. thesis, ENSAM

  12. He A, Xie G, Zhang H, Wang X (2013) A comparative study on Johnson-Cook, modified Johnson-Cook and arrhenius-type constitutive models to predict the high temperature flow stress in 20crmo alloy steel. Mater Des 52:677–685

    Article  Google Scholar 

  13. Hou QY, Wang JT (2010) A modified Johnson-Cook constitutive model for mg-gd-y alloy extended to a wide range of temperatures. Comput Mater Sci 50(1):147–152

    Article  Google Scholar 

  14. Hor A (2011) Simulation physique des conditions thermomécaniques de forgeage et d’usinage - caractérisation et modélisation de la rhéologie et de l’endommagement. Ph.D. thesis, ENSAM

  15. Johnson G, Cook W (1983) A constitutive model and data for metals subjected to large strains, high strain rates and temperature. In: 7th International Symposium on ballistics

  16. Cheng K, Huo D (2013) Micro-cutting: fundamentals and applications:2013

  17. Li H, Wang X, Duan J, Liu J (2013) A modified johnson cook model for elevated temperature flow behavior of t24 steel. Mater Sci Eng A 577:138–146

    Article  Google Scholar 

  18. List G, Sutter G, Bouthiche A (2012) Cutting temperature prediction in high speed machining by numerical modelling of chip formation and its dependence with crater wear. Int J Mach Tools Manuf 54–55:1–9

    Article  Google Scholar 

  19. Ludwik P (1909) Elemente der technologischen mechanik. Springer Verlag

  20. Lurdos O (2008) Lois de comportement et recristallisation dynamique: approches empirique et physique. Ph.D. thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne

  21. Meyers M, Subhash G, Kad B, Prasad L (1994) Evolution of microstructure and shear-band formation in α-hcp titanium. Mech Mater 17(2–3):175–193

    Article  Google Scholar 

  22. Meyers M, Xu Y, Xue Q, Pérez-Prado M., McNelley T (2003) Microstructural evolution in adiabatic shear localization in stainless steel. Acta Mater 51(5):1307–1325

    Article  Google Scholar 

  23. Mirza F, CHEN D, LI D, ZENG X (2013) A modified Johnson-Cook constitutive relationship for a rare-earth containing magnesium alloy. J Rare Earths 31(12):1202–1207

    Article  Google Scholar 

  24. M’saouibi R (1998) Aspects thermiques et microstructuraux de la coupe. Application Aǎ la coupe orthogonale des aciers austénitiques. Ph.D. thesis, ENSAM

  25. Pan H, Liu J, Choi Y, Xu C, Bai Y, Atkins T (2016) Zones of material separation in simulations of cutting. Int J Mech Sci 115–116:262–279

    Article  Google Scholar 

  26. Pujana J, Campo L, Pérez-Sáez R., Gallego M, Arrazola PJ (2008) Radiation thermometry applied to temperature measurement in the cutting process. Meas Sci Technol 202(1–3):475–485

    Google Scholar 

  27. Rohr I, Nahme H, Thoma K Jr, CA (2008) Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates. Int J Impact Eng 35(8):811– 819

    Article  Google Scholar 

  28. Samantaray D, Mandal S, Bhaduri A (2009) A comparative study on johnson cook, modified zerilli-armstrong and arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9cr-1mo steel. Comput Mater Sci 47(2):568–576

    Article  Google Scholar 

  29. Scapin M, Peroni L, Peroni M (2012) Parameters identification in strain-rate and thermal sensitive visco-plastic material model for an alumina dispersion strengthened copper. Int J Impact Eng 40–41:58–67

    Article  Google Scholar 

  30. Schonberg WP, Kupchella R, Stowe D, Xiao X, Algoso A, Cogar J (2015) Proceedings of the 2015 hypervelocity impact symposium (hvis 2015) incorporation of material variability in the johnson cook model. Procedia Eng 103:318–325

    Article  Google Scholar 

  31. Taylor G, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc Roy Soc:307–326

  32. Teixeira J (2005) Etude expérimentale et modélisation des évolutions microstructurales au cours des traitements thermiques post forgeage dans l’alliage de titane ti17. Ph.D. thesis, Institut National Polytechnique de Lorraine

  33. Teng X, Wierzbicki T (2006) Evaluation of six fracture models in high velocity perforation. Eng Fract Mech 73(12):1653–1678

    Article  Google Scholar 

  34. Wierzbicki T, Bao Y, Lee Y-W, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47(4–5):719–743

    Article  Google Scholar 

  35. Yaich M, Ayed Y, Bouaziz Z, Germain G (2016) Numerical analysis of constitutive coefficients effects on fe simulation of the 2d orthogonal cutting process: application to the ti6al4v. Int J Adv Manuf Technol1–21

  36. Zerilli F, Armstrong R (1988) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61:1816–1825

    Article  Google Scholar 

  37. Zhao H (1997) A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets. Mater Sci Eng A 230(1–2):95–99

    Article  Google Scholar 

  38. Zhang D-N, Shangguan Q-Q, Xie C-J, Liu F (2015) A modified Johnson-Cook model of dynamic tensile behaviors for 7075-t6 aluminum alloy. J Alloys Compd 619:186–194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayed, Y., Germain, G., Ammar, A. et al. Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions. Int J Adv Manuf Technol 90, 1593–1603 (2017). https://doi.org/10.1007/s00170-016-9476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9476-5

Keywords

Navigation