Skip to main content
Log in

The seam position detection and tracking for the mobile welding robot

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To solve the problems that the current seam tracking process cannot find the weld line and the control method based on the kinematic model of welding mobile robot leads to low accuracy, a method for searching the welding seam is designed firstly. By this method, the initiation point of the weld line can be found and the attitude of the robot parallel to the weld line can be adjusted automatically. Secondly, for improving the tracking precision and anti-interference performance, a new controller based on the kinematic and dynamic model of the mobile welding robot is designed. To deal with the partial uncertainty and the disturbances of welding process, this controller combines the sliding mode variable structure control and low-pass filter, so that it is able to complete the controlling of cross-slider and wheels coordinately. The stability and convergence of the designed controller are proved through the use of Lyapunov theory. The effectiveness of the proposed method is verified by simulation and experiments. In the seam tracking process, the welding torch is able to track the welding seam well and the robot moves steadily without any obvious chattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu PQ TXH, LU FG, Yao S (2007) An active vision sensing method for welded seams location using “circle-depth relation” algorithm. Int J Adv Manuf Tech 32(9):918–926. doi:10.1007/s00170-006-0410-0

    Google Scholar 

  2. Chang DY, Son DH, Lee JW, Lee DH, Kim TW, Lee KY, Kim JW (2012) A new seam-tracking algorithm through characteristic-point detection for a portable welding robot. Robot Comput Integr Manuf 28:1–13. doi:10.1016/j.rcim.2011.06.001

    Article  Google Scholar 

  3. Zheng R, Zhang P, Aiqing D, Peng X (2014) Measurement of laser welding pool geometry using a closed convex active contour model. Meas Sci Technol 25:035010. doi:10.1088/0957-0233/25/3/035603 (17pp)

    Article  Google Scholar 

  4. Gregor G¨o, Heinz Sch¨opp FH, Gerd H (2010) Improvement of the control of a gas metal arc welding process. Meas Sci Technol 21(2):025201. doi:10.1088/0957-0233/21/2/025201

    Article  Google Scholar 

  5. Huang Y, Xiao YL, Wang PJ, Li MZH (2013) A seam-tracking laser welding platform with 3D and 2D visual information fusion vision sensor system. Int J Adv Manuf Technol 67(1):415–426. doi:10.1007/s00170-012-4494-4

    Article  Google Scholar 

  6. Heber M, Lenz M, Rüther M, Bischof H, Fronthaler H, Croonen G (2013) Weld seam tracking and panorama image generation for on-line quality assurance. Int J Adv Manuf Technol 65(9):1371–1382. doi:10.1007/s00170-012-4263-4

    Article  Google Scholar 

  7. Nele L, Sarno E, Keshari A (2013) An image acquisition system for real-time seam tracking. Int J Adv Manuf Technol 69(9):2099–2110. doi:10.1007/s00170-013-5167-7

    Article  Google Scholar 

  8. Shao JY, Zhang CQ, Liu Z, CHEN K (2012) Trajectory optimization method of special operation redundant root for vibration suppression. J Mech Eng 48(1):1–7. doi:10.3901/JME.2012.01.013

    Article  Google Scholar 

  9. Yang SM, Cho MH, Lee HY, Cho TD (2007) Weld line detection and process control for welding automation. Meas Sci Technol 18(3):819–826. doi:10.1088/0957-0233/18/3/034

    Article  Google Scholar 

  10. Aghili F (2012) A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans Robot 28(3):634–649. doi:10.1109/TRO.2011.2179581

    Article  MathSciNet  Google Scholar 

  11. Pan BZH, Song YM, Wang PF, Dong G, Sun T (2014) Laser tracker based rapid home position calibration of a hybrid robot. J Mech Eng 50(1):31–37. doi:10.3901/JME.2014.01.031

    Article  Google Scholar 

  12. Gao SH, Chang YL, ZHang RJ, Ren YL (2008) Space welding seam tracking based on free floating space robot. Transactions of the China Welding Institution 29(11):65–68. doi:10.3321/j.issn:0253-360X.2008.11.017

    Google Scholar 

  13. Hong B, Zhang QL, Li XW, Li Y (2012) A analysis method of seam tracking accuracy based on wheeled robot. Transactions of the China Welding Institution 33(1):13–16

    Google Scholar 

  14. Wand ZY, Li YD, Zhu L (2010) Dual adaptive neural sliding mode control of nonholonomic mobile robot. J Mech Eng 46(23):16–22. doi:10.3901/JME.2010.23.016

    Article  Google Scholar 

  15. Wu B, Xu WF, CHen HL (2009) Application of neural networks sliding mode control in tracking control of robot manipulators. Electric Machines and Control 13(sup1):99–104. doi:10.15938/j.emc.2009.s1.029

    Google Scholar 

  16. Wu M, Li LL, Sun JY (2012) PDA-IMM based moving object tracking with mobile robots in unknown environments. Robot 34(6):668–679. doi:10.3724/SP.J.1218.2012.00668

    Article  Google Scholar 

  17. Zhang T, Chen SB (2014) Optimal posture searching algorithm on mobile welding robot. J Shanghai Jiaotong Univ (Sci) 19(1):84–87. doi:10.1007/s12204-014-1477-7

    Article  MathSciNet  Google Scholar 

  18. Wei C, Zhao Y, Wang HL (2011) Space robot soft-hard grasping based on sliding mode control. J Mech Eng 47(1):43–47. doi:10.3901/JME.2011.01.043, 54

    Article  Google Scholar 

  19. Jaime F, Aviles-Viñas RRC, Ismael LJ (2016) On-line learning of welding bead geometry in industrial robots. Int J Adv Manuf Technol 83(1):217–231. doi:10.1007/s00170-015-7422-6

    Google Scholar 

  20. Shi L, Tian XC, Zhang CH (2015) Automatic programming for industrial robot to weld intersecting pipes. Int J Adv Manuf Technol 81(9):2099–2107. doi:10.1007/s00170-015-7331-8

    Article  Google Scholar 

  21. Gao XD, Mo L, Xiao ZL, Chen XH, Katayama S (2016) Seam tracking based on Kalman filtering of micro-gap weld using magneto-optical image. Int J Adv Manuf Technol 83(1):21–32. doi:10.1007/s00170-015-7560-x

    Article  Google Scholar 

  22. Chen HY, Liu K, Xing GS, Dong Y, Sun HX, Lin W (2013) A robust visual servo control system for narrow seam double head welding robot. Int J Adv Manuf Technol 71(9):1849–1860. doi:10.1007/s00170-013-5593-6

    Google Scholar 

  23. Qiao JF (2014) Design of liquid concentration measurement system based on single chip microcomputer. Taiyuan Industrial College, Master’s degree thesis

  24. Lu XQ, Zhang K, Liu G, Wu YX (2007) The control of a mobile robot to find the weld line automatically. Weld Cut 6(6):334–338

    Google Scholar 

  25. Lü XQ, Zhang K, Wu YX (2014) Control of the wheeled mobile welding robot based on output feedback linearization. J mech Eng 50(6):48–54. doi:10.3901/JME.2014.06.048

    Article  Google Scholar 

  26. Chen Y, Zhang JF, Yang CJ, Niu B (2007) Design and hybrid control of the pneumatic force-feedback systems for arm-exoskeleton by using on/off valve. Mech Mater 17(7):325–335. doi:10.1016/j.mechatronics.2007.04.001

    Google Scholar 

  27. Chen Y, Zhang JF, Yang CJ, Niu B (2007) The workspace mapping with deficient DOF space for the puma 560 robot and its exoskeleton arm by using orthogonal experiment design method. Robot Comput Integr Manuf 23(4):478–487. doi:10.1016/j.rcim.2006.05.007

    Article  Google Scholar 

  28. Zhang X, Liu FJ, Yan MD (2012) Dynamic model-based adaptive sliding-mode trajectory tracking control over wheeled mobile robot. Mechanical Science and Technology for Aerospace Engineering 31(1):107–112. doi:10.13433/j.cnki.1003-8728.2012.01.018

  29. Zhu JW, Zhu DC, Cai JB (2009) Design of sliding mode controller with low-pass filter for robot manipulators. Second International Workshop on Knowledge Discovery and Data Mining, Date of Conference: 23-25 Jan. 2009, Conference Location: Moscow, pp. 296-298. doi: 10.1109/WKDD.2009.118

  30. Jin X, Huang J, Zhang K, Wu YX (2011) Kinematics modeling and real-time seam tracking for welding mobile robot. Second International Conference on Digital Manufacturing & Automation, Issue Date: 5-7 Aug, pp. 681-685. doi: 10.1109/ICDMA.2011.170

  31. ZHang K, Wu YX, Lu XQ, Jin X (2008) Dynamic modeling for differentially steered welding mobile robot. J Mech Eng 44(11):116–120. doi:10.3901/JME.2008.11.116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, X., Zhang, K. & Wu, Y. The seam position detection and tracking for the mobile welding robot. Int J Adv Manuf Technol 88, 2201–2210 (2017). https://doi.org/10.1007/s00170-016-8922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8922-8

Keywords

Navigation