Skip to main content
Log in

The use of carbide and particle-damped bars to increase tool overhang in the internal turning of hardened steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Vibrations are very prejudicial to machining as they directly affect the dimensional accuracy and surface roughness of the machined part. Excessive vibration must be avoided or at least reduced. This can be achieved in several ways, including the use of dampers and more rigid material for tool holders. Tool vibration is stimulated in internal turning by the cantilever shape of the tool and the large tool overhang used, impairing the quality of the turned part. This is a serious problem in the turning of hardened steel because internal turning is usually the last operation carried out on the surface, making tight tolerances and low surface roughness values necessary. Excessive vibrations would harm the surface finish and could lead to tool breakage because of the low toughness of the tool materials used for this kind of application. The main objective of this work was therefore to identify alternative approaches for finishing internal turning of long holes in hardened steel parts. Different tool holder materials (steel and cemented carbide) and a particle impact damped steel tool holder were tested to determine the longest overhang that could be achieved in each configuration. The results showed that carbide bars reduced vibrations and allowed longer overhangs to be used. Particle impact dampers may be a simple alternative to the more expensive carbide bars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huo D, Cheng K (2009) Basic concepts and theory. In: Cheng K (ed) Machining dynamics: fundamentals, applications and practices. Springer, London, pp 7–20

    Google Scholar 

  2. Rivin EI, Kang H (1992) Enhancement of dynamic stability of cantilever tooling structures. Int J Mach Tools Manuf 32(4):539–561. doi:10.1016/0890-6955(92)90044-H

    Article  Google Scholar 

  3. Sortino M, Totis G, Prosperi F (2012) Development of a practical model for selection of stable tooling system configurations in internal turning. Int J Mach Tools Manuf 6:58–70. doi:10.1016/j.ijmachtools.2012.05.010

    Article  Google Scholar 

  4. Selvam MS (1975) Tool vibration and its influence on surface roughness in turning. Wear 35:149–157. doi:10.1016/0043-1648(75)90149-0

    Article  Google Scholar 

  5. Kiyak M, Kaner B, Sahin I, Aldemir B, Cakir O (2010) The dependence of tool overhang on surface quality and tool wear in the turning process. Int J Adv Manuf Technol 51(5–8):431–438. doi:10.1007/s00170-010-2654-y

    Article  Google Scholar 

  6. Devaraj S, Shivalingappa D, Channankaiah, Jangaler RS (2014) Surface quality enrichment using fine particle impact damper in boring operations. Int J Res Eng Technol 3(2):531–535. eISSN: 2319–1163

  7. Atabey F, Lazoglu I, Altintas Y (2003) Mechanics of boring processes—part I. Int J Mach Tools Manuf 43:463–476. doi:10.1016/S0890-6955(02)00276-6

    Article  Google Scholar 

  8. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51:363–376. doi:10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  9. Song Q, Shi J, Liu Z, Wan Y, Xia F (2015) Boring bar with constrained layer damper for improving process stability. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7670-5

    Google Scholar 

  10. Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 61:27–47. doi:10.1016/j.ijmachtools.2012.05.007

    Article  Google Scholar 

  11. Ema S, Marui E (1994) A fundamental study on impact dampers. Int J Mach Tools Manuf 34(407):407–421. doi:10.1016/0890-6955(94)90009-4

    Article  Google Scholar 

  12. Waydande S, Mahajan DA, Gajjal SY (2014) A review on vibration attenuation of boring bar using passive dampers. Int J Emerging Technol Adv Eng 4(4):117–122. ISSN 2250–2459

  13. Rubio L, Loya JA, Miguélez MH, Fernández-Sáez J (2013) Optimization of passive vibration absorbers to reduce chatter in boring. Mech Syst Signal Process 41:691–704. doi:10.1016/j.ymssp.2013.07.019

    Article  Google Scholar 

  14. Vinayaravi R, Kumaresan D, Jayaraj K, Asraff AK, Muthukumar R (2013) Experimental investigation and theoretical modelling of an impact damper. J Sound Vib 332:1324–1334. doi:10.1016/j.jsv.2012.10.032

    Article  Google Scholar 

  15. Zhang C, Chen T, Wang X, Li Y (2014) Discrete element method model and damping performance of bean bag dampers. J Sound Vib 333:6024–6037. doi:10.1016/j.jsv.2014.07.011

    Article  Google Scholar 

  16. Ema S, Marui E (1996) Damping characteristics of an impact damper and its application. Int J Mach Tools Manuf 36(3):293–306. doi:10.1016/0890-6955(95)00073-9

    Article  Google Scholar 

  17. Lu Z, Lu X, Masri SF (2010) Studies of the performance of particle dampers under dynamic loads. J Sound Vib 329:5415–5433. doi:10.1016/j.jsv.2010.06.027

    Article  Google Scholar 

  18. Du Y, Wang S (2010) Modeling the fine particle impact damper. Int J Mech Sci 52:1015–1022. doi:10.1016/j.ijmecsci.2010.04.004

    Article  Google Scholar 

  19. Ema S, Marui E (2000) Suppression of chatter vibration of boring tools using impact dampers. Int J Mach Tools Manuf 40:1141–1156. doi:10.1016/S0890-6955(99)00119-4

    Article  Google Scholar 

  20. Kumar MS, Mohanasundaram KM, Sathishkumar B (2011) A case study on vibration control in boring bar using particle damping. Int J Eng Sci Technol 3(8):177–184. doi:10.4314/ijest.v3i8.15

    Google Scholar 

  21. Lawrance G, Paul PS, Varadarajan AS, Praveen AP, Vasanth XA (2015) Attenuation of vibration in boring tool using spring controlled impact damper. Int J Interact Des Manuf. doi:10.1007/s12008-015-0292-1

    Google Scholar 

  22. Sims ND, Amarasinghe A, Ridgway K (2005) Particle dampers for workpiece chatter mitigation. ASME 2005 Int Mech Eng Congress Exposition. doi:10.1115/IMECE2005-82687

    Google Scholar 

  23. Marhadi KS, Kinra VK (2005) Particle impact damping: effect of mass ratio, material, and shape. J Sound Vib 283:433–448. doi:10.1016/j.jsv.2004.04.013

    Article  Google Scholar 

  24. Hessainia Z, Belbah A, Yallese MA, Mabrouki T, Rigal J (2013) On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurements 46:1671–1681. doi:10.1016/j.measurement.2012.12.016

    Google Scholar 

  25. Coromant S (2009) Technical guide. Sandvik, Sandviken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Iwao Suyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyama, D.I., Diniz, A.E. & Pederiva, R. The use of carbide and particle-damped bars to increase tool overhang in the internal turning of hardened steel. Int J Adv Manuf Technol 86, 2083–2092 (2016). https://doi.org/10.1007/s00170-015-8328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8328-z

Keywords

Navigation