Skip to main content
Log in

Tool life and surface integrity when turning titanium aluminides with PCD tools under conventional wet cutting and cryogenic cooling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The high-performance machining of difficult-to-cut alloys requires the development and optimization of high-performance tools, able to withstand the thermo-mechanical tool load without compromising the surface quality of produced components. In this context, the machinability of titanium aluminides still represents a demanding challenge. In this paper, the performance of cubic boron nitride (CBN) and polycrystalline diamond (PCD) cutting inserts is compared to that of uncoated and coated carbide tools. Longitudinal external turning tests were performed on a Ti-43.5Al-4Nb-1Mo-0.1B (TNM) at.% cast and hot isostatically pressed (HIPed) γ-TiAl alloy, by using a conventional lubrication supply. In addition, PCD tools were also applied under cryogenic cooling with liquid nitrogen. Results proved that PCD cutting tools have the potential to improve the machining productivity of titanium aluminides, due to their high hardness and excellent thermal conductivity. A noteworthy further increase of tool life was possible by using PCD cutting inserts under cryogenic cooling conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clemens H, Mayer S (2014) Development status, applications and perspectives of advanced intermetallic titanium aluminides. Mater Sci Forum 783–786:15–20

    Article  Google Scholar 

  2. Cheng TT, Willis MR, Jones IP (1999) Effects of major alloying additions on the microstructure and mechanical properties of γ-TiAl. Intermetallics 7:89–99

    Article  Google Scholar 

  3. Kothari K, Radhakrishnan R, Wereley NM (2012) Advances in gamma titanium aluminides and their manufacturing techniques. Prog Aerosp Sci 55:1–16

    Article  Google Scholar 

  4. Djanarthany S, Viala J-C, Bouix J (2001) An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater Chem Phys 72:301–319

    Article  Google Scholar 

  5. Austin CM (1999) Current status of gamma Ti aluminides for aerospace applications. Curr Opin Solid State Mater Sci 4:239–242

    Article  Google Scholar 

  6. Tetsui T (1999) Gamma Ti aluminides for non-aerospace applications. Curr Opin Solid State Mater Sci 4:243–248

    Article  Google Scholar 

  7. Weinert K, Bergmann S, Kempmann C (2006) Machining sequence to manufacture a γ-TiAl-conrod for application in combustion engines. Adv Eng Mater 8:41–47

    Article  Google Scholar 

  8. Gebauer K (2006) Performance, tolerance and cost of TiAl passenger car valves. Intermetallics 14:355–360

    Article  Google Scholar 

  9. Larsen DE Jr (1996) Status of investment cast gamma titanium aluminides in the USA. Mater Sci Eng A213:128–133

    Article  Google Scholar 

  10. Wang YH, Lin JP, He YH, Wang YL, Chen GL (2009) Microstructural characteristics of Ti-45Al-8.5Nb/TiB2 composites by powder metallurgy. J Alloys Compd 468:505–511

    Article  Google Scholar 

  11. Appel F, Oehring M, Paul JDH, Klinkenberg C, Carneiro T (2004) Physical aspects of hot-working gamma-based titanium aluminides. Intermetallics 12:791–802

    Article  Google Scholar 

  12. Tetsui T, Shindo K, Kaji S, Kobayashi S, Takeyama M (2005) Fabrication of TiAl components by means of hot forging and machining. Intermetallics 13:971–978

    Article  Google Scholar 

  13. Aspinwall DK, Dewes RC, Mantle AR (2005) The machining of γ-TiAl intermetallic alloys. CIRP Ann Manuf Technol 54:99–104

    Article  Google Scholar 

  14. Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70:919–928

    Article  Google Scholar 

  15. Hood R, Aspinwall DK, Soo SL, Mantle AL, Novovic D (2014) Workpiece surface integrity when slot milling γ-TiAl intermetallic alloy. CIRP Ann Manuf Technol 63:53–56

    Article  Google Scholar 

  16. Kolahdouz S, Hadi M, Arezoo B, Zamani S (2015) Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions. Procedia CIRP 26:367–372

    Article  Google Scholar 

  17. Sharman ARC, Aspinwall DK, Dewes RC, Bowen P (2001) Workpiece surface integrity considerations when finish turning gamma titanium aluminide. Wear 249:473–481

    Article  Google Scholar 

  18. Mantle AL, Aspinwall DK (2001) Surface integrity of a high speed milled gamma titanium aluminide. J Mater Process Technol 118:143–150

    Article  Google Scholar 

  19. Sharman ARC, Aspinwall DK, Dewes RC, Clifton D, Bowen P (2001) The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide. Int J Mach Tools Manuf 41:1681–1685

    Article  Google Scholar 

  20. Mantle AL, Aspinwall DK (1997) Surface integrity and fatigue life of turned gamma titanium aluminide. J Mater Process Technol 72:413–420

    Article  Google Scholar 

  21. Uhlmann E, Schauerte OS, Brücher M, Herter S (2001) Tool wear during turning of titanium aluminide intermetallics. Prod Eng VIII/2:13–16

    Google Scholar 

  22. Beranoagirre A, López de Lacalle LN (2011) Turning of gamma TiAl intermetallic alloys. Proc 4th Manuf Eng Soc Int Conf AIP Conf Proc 1431:526–532

  23. Vargas Pérez RG (2005) Wear mechanisms of WC inserts in face milling of gamma titanium aluminides. Wear 259:1160–1167

    Article  Google Scholar 

  24. Mantle AL, Aspinwall DK (2006) Cutting force evaluation when high speed end milling a gamma titanium aluminide intermetallic alloy. In: Morris DG, Naka S, Caron P (eds) Intermetallics and superalloys 10. Wiley-VCH Verlag GmbH & Co

  25. Beranoagirre A, López de Lacalle LN (2010) Optimising the milling of titanium aluminides alloys. Int J Mechatron Manuf Syst 3:425–436

    Google Scholar 

  26. Beranoagirre A, Olvera D, López de Lacalle LN (2012) Milling of gamma titanium-aluminum alloys. Int J Adv Manuf Technol 62:83–88

    Article  Google Scholar 

  27. Aspinwall DK, Mantle AL, Chan WK, Hood R, Soo SL (2013) Cutting temperatures when ball nose end milling γ-TiAl intermetallic alloys. CIRP Ann Manuf Technol 62:75–78

    Article  Google Scholar 

  28. Beranoagirre A, Olvera D, Urbicain G, López de Lacalle LN, Lamikiz A (2010) Hole making in gamma TiAl. DAAAM Int Sci Book 2010:337–346

    Google Scholar 

  29. Zhu L, Chen X, Viehweger B (2010) Preliminary study on deep-hole drilling gamma titanium aluminide. Adv Mater Res 139–141:831–834

    Article  Google Scholar 

  30. Zhu L, Chen X, Viehweger B (2011) Experimental study on deep hole drilling gamma titanium aluminide. Key Eng Mater 455:293–296

    Article  Google Scholar 

  31. Settineri L, Priarone PC, Arft M, Lung D, Stoyanov T (2014) An evaluative approach to correlate machinability, microstructures, and material properties of gamma titanium aluminides. CIRP Ann Manuf Technol 63:57–60

    Article  Google Scholar 

  32. Klocke F, Settineri L, Lung D, Priarone PC, Arft M (2013) High performance cutting of gamma titanium aluminides: influence of lubricoolant strategy on tool wear and surface integrity. Wear 302:1136–1144

    Article  Google Scholar 

  33. Sadik IM (2013) An introduction to cutting tools materials and applications. Sandvik Coromant. Printed by Elanders, Sweden. ISBN 978-91-637-4920-9

    Google Scholar 

  34. Nurul Amin AKM, Ismail AF, Nor Khairusshima MK (2007) Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy-Ti-6Al-4V. J Mater Process Technol 192–193:147–158

    Article  Google Scholar 

  35. Ferraris E, Mestrom T, Bian R, Reynaerts D, Lauwers B (2012) Machinability investigation on high speed hard turning of ZrO2 with PCD tools. Procedia CIRP 1:500–505

    Article  Google Scholar 

  36. Dolda C, Henerichs M, Bochmann L, Wegener K (2012) Comparison of ground and laser machined polycrystalline diamond (PCD) tools in cutting carbon fiber reinforced plastics (CFRP) for aircraft structures. Procedia CIRP 1:178–183

    Article  Google Scholar 

  37. Philbin P, Gordon S (2005) Characterisation of the wear behaviour of polycrystalline diamond (PCD) tools when machining wood-based composites. J Mater Process Technol 162–163:665–672

    Article  Google Scholar 

  38. Cook MW, Bossom PK (2000) Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride. Int J Refract Met Hard Mater 18:147–152

    Article  Google Scholar 

  39. Costes JP, Guillet Y, Poulachon G, Dessoly M (2007) Tool-life and wear mechanisms of CBN tools in machining of Inconel 718. Int J Mach Tools Manuf 47:1081–1087

    Article  Google Scholar 

  40. Poulachon G, Bandyopadhyay BP, Jawahir IS, Pheulpin S, Seguin E (2004) Wear behavior of CBN tools while turning various hardened steels. Wear 256:302–310

    Article  Google Scholar 

  41. Aguilar J, Schievenbusch A, Kättlitz O (2011) Investment casting technology for production of TiAl low pressure turbine blades—process engineering and parameter analysis. Intermetallics 19:757–761

    Article  Google Scholar 

  42. Klocke F, Lung D, Arft M, Priarone PC, Settineri L (2013) On high-speed turning of a third-generation gamma titanium aluminide. Int J Adv Manuf Technol 65:155–163

    Article  Google Scholar 

  43. Klocke F (2011) Manufacturing processes 1—cutting. RWTH Edition, Springer-Verlag Berlin Heidelberg

  44. Priarone PC, Robiglio M, Settineri L, Tebaldo V (2015) Effectiveness of minimizing cutting fluid use when turning difficult-to-cut alloys. Procedia CIRP 29:341–346

    Article  Google Scholar 

  45. Priarone PC, Rizzuti S, Settineri L, Vergnano G (2012) Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide. J Mater Process Technol 212:2619–2628

    Article  Google Scholar 

  46. Ekimov EA, Suetin NV, Popovich AF, Ralchenko VG (2008) Thermal conductivity of diamond composites sintered under high pressures. Diam Relat Mater 17:838–843

    Article  Google Scholar 

  47. Ezugwu EO, Da Silva RB, Bonney J, Machado AR (2005) Evaluation of the performance of CBN tools when turning Ti-6Al-4V alloy with high pressure coolant supplies. Int J Mach Tools Manuf 45:1009–1014

    Article  Google Scholar 

  48. Zoya ZA, Krishnamurthy R (2000) The performance of CBN tools in the machining of titanium alloys. J Mater Process Technol 100:80–86

    Article  Google Scholar 

  49. Yildiz Y, Nalbant M (2008) A review of cryogenic cooling in machining processes. Int J Mach Tools Manuf 48:947–964

    Article  Google Scholar 

  50. Wang ZY, Rajurkar KP (2000) Cryogenic machining of hard-to-cut materials. Wear 239:168–175

    Article  Google Scholar 

  51. Bermingham MJ, Palanisamy S, Kent D, Dargusch MS (2012) A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti-6Al-4V cutting. J Mater Process Technol 212:752–765

    Article  Google Scholar 

  52. Kaynak Y, Lu T, Jawahir IS (2014) Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining. Mach Sci Technol 18:149–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo C. Priarone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priarone, P.C., Klocke, F., Faga, M.G. et al. Tool life and surface integrity when turning titanium aluminides with PCD tools under conventional wet cutting and cryogenic cooling. Int J Adv Manuf Technol 85, 807–816 (2016). https://doi.org/10.1007/s00170-015-7958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7958-5

Keywords

Navigation