Skip to main content
Log in

On high-speed turning of a third-generation gamma titanium aluminide

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Gamma titanium aluminides are heat-resistant intermetallic alloys predestined to be employed in components suffering from high mechanical stresses and thermal loads. These materials are regarded as difficult to cut, so this makes process adaptation essential in order to obtain high-quality and defect-free surfaces suitable for aerospace and automotive parts. In this paper, an innovative approach for longitudinal external high-speed turning of a third-generation Ti-45Al-8Nb-0.2C-0.2B gamma titanium aluminide is presented. The experimental campaign has been executed with different process parameters, tool geometries and lubrication conditions. The results are discussed in terms of surface roughness/integrity, chip morphology, cutting forces and tool wear. Experimental evidence showed that, due to the high cutting speed, the high temperatures reached in the shear zone improve chip formation, so a crack-free surface can be obtained. Furthermore, the use of a cryogenic lubrication system has been identified in order to reduce the huge tool wear, which represents the main drawback when machining gamma titanium aluminides under the chosen process conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar J, Arft M, Grüneberg C, Guntlin R, Kättlitz O, Klocke F, Lung D (2011) Fliegen leicht gemacht. RWTH Themen 1:40–42

    Google Scholar 

  2. Loria EA (2000) Gamma titanium aluminides as a prospective structural materials. Intermetallics 8:1339–1345

    Article  Google Scholar 

  3. Loria EA (2001) Quo vadis gamma titanium aluminide. Intermetallics 9:997–1001

    Article  Google Scholar 

  4. Weinert K, Bergmann S, Kempmann C (2006) Machining sequence to manufacture a γ-TiAl-conrod for application in combustion engines. Adv Eng Mater 8:41–47

    Article  Google Scholar 

  5. Austin CM (1999) Current status of gamma titanium aluminides for aerospace applications. Curr Opin Solid State Mater Sci 4:239–242

    Article  Google Scholar 

  6. Tetsui T (1999) Gamma Ti aluminides for non-aerospace applications. Curr Opin Solid State Mater Sci 4:243–248

    Article  Google Scholar 

  7. Aspinwall DK, Dewes RC, Mantle AR (2005) The machining of γ-TiAl intermetallic alloys. CIRP Ann 54(1):99–104

    Article  Google Scholar 

  8. Sharman ARC, Aspinwall DK, Dewes D, Clifton RC, Bowen P (2001) The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide. Int J Mach Tool Manuf 41:1681–1685

    Article  Google Scholar 

  9. Sharman ARC, Aspinwall DK, Dewes RC, Bowen P (2001) Workpiece surface integrity considerations when finish turning gamma titanium aluminide. Wear 249:473–481

    Article  Google Scholar 

  10. Mantle AL, Aspinwall DK (1997) Surface integrity and fatigue life of turned gamma titanium aluminide. J Mater Process Technol 72:413–420

    Article  Google Scholar 

  11. Bentley SA, Goh NP, Aspinwall DK (2001) Reciprocating surface grinding of a gamma titanium aluminide intermetallic alloy. J Mater Process Technol 118:22–28

    Article  Google Scholar 

  12. Gröning H, Klocke F, Weiß M (2009) Schleifen von gamma-Titanaluminden. wt-Werkstatttechnik online Jahrgang 99

  13. Mantle AL, Aspinwall DK (2001) Surface integrity of a high speed milled gamma titanium aluminide. J Mater Process Technol 118:143–150

    Article  Google Scholar 

  14. Beranoagirre A, Olvera D, López de Lacalle LN (2011) Milling of gamma titanium–aluminum alloys. Int J Adv Manuf Technol. doi:10.1007/s00170-011-3812-6

  15. Priarone PC, Rizzuti S, Rotella G, Settineri L (2011) Tool wear and surface quality in milling of a gamma-TiAl intermetallic. Int J Adv Manuf Technol. doi:10.1007/s00170-011-3691-x

  16. Beranoagirre A, Olvera D, Urbicain G, López de Lacalle LN, Lamikiz A (2010) Hole making in gamma TiAl. DAAAM Int Sci Book 2010:337–346

    Google Scholar 

  17. Beranoagirre A, López de Lacalle LN (2011) Turning of gamma TiAl intermetallic alloys. Proceedings of the 4th Manufacturing Engineering Society International Conference

  18. Uhlmann E, Schauerte O, Brücher M, Herter S (2001) Tool wear during turning of titanium aluminide intermetallics. Prod Eng 8(2):13–16

    Google Scholar 

  19. Bergmann S (2008) Beitrag zur Zerspanung intermetallischer gamma-Titanaluminide durch Bohren, Gewindebohren und Fräsen. Dissertation, Dortmund University

  20. Weinert K, Biermann D, Bergmann S (2007) Machining of high strength light weight alloys for engine applications. CIRP Ann 56(1):105–108

    Article  Google Scholar 

  21. Roth M, Biermann H (2006) Thermo-mechanical fatigue behaviour of the γ-TiAl alloy TNB-V5. Scr Mater 54:137–141

    Article  Google Scholar 

  22. Klocke F (2011) Manufacturing processes. 1—Cutting. RWTH edition. Springer, Berlin

  23. Klocke F, Stegen A, Fritsch R (2008) Grundlagenuntersuchungen zur ultraschallunterstützen Zerspanung intermetallischer gamma-Titanaluminidlegierungen, DFG Abschlussbericht

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Claudio Priarone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klocke, F., Lung, D., Arft, M. et al. On high-speed turning of a third-generation gamma titanium aluminide. Int J Adv Manuf Technol 65, 155–163 (2013). https://doi.org/10.1007/s00170-012-4157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4157-5

Keywords

Navigation