Skip to main content
Log in

Modelling of the hardening and finishing stages of grind-hardened workpieces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Grind-hardening is a manufacturing process that uses the heat generated within the grinding zone in order to produce surface hardening. After the process, workpieces present dimensional inaccuracies and a poor surface finish. Thus, a finishing grinding operation has to be carried out. For a successful implementation of the whole process, two problems have to be solved. Firstly, the desired hardened depth has to be achieved in the hardening stage. Secondly, surface softening has to be controlled during the finishing stage. The objective of this work is to address the modelling of the whole process so that the experimental effort during its set up is reduced. To do this, firstly, a thermal model is developed for the estimation of the hardened depth. This model considers the heat evacuated by the chips in a simplified way and takes into account the heat consumed by the fast austenitization process through an original methodology. Secondly, a model is proposed for the estimation of surface softening during finishing grinding. A methodology is presented for the prediction of surface hardness under non-isothermal tempering. Both models are calibrated and validated for the AISI 1045 steel, and the predicted results are in agreement with the experimental data for the studied grinding regimes. In this regard, the grind-hardening model predicts the hardness penetration depth (HPD) precisely for HPD values over 0.2 mm. The finishing model estimates the surface hardness after the finishing of the workpiece with an error lower than 6 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu M, Nguyen T, Zhang L, Wu Q, Sun D (2015) Effect of grinding-induced cyclic heating on the hardened layer generation in the plunge grinding of a cylindrical component. Int J Mach Tools Manuf 89:55–63

    Article  Google Scholar 

  2. Brockhoff T (1999) Grind-hardening: a comprehensive view. Ann CIRP 48:255–260

    Article  Google Scholar 

  3. Songyong L, Gang Y, Jiaqiang Z, Xiaohui L (2015) Numerical and experimental studies on grind-hardening cylindrical surface. Int J Adv Manuf Technol 76:487–499

    Article  Google Scholar 

  4. Salonitis K, Chondros T, Chryssolouris G (2008) Grinding wheel effect in the grind-hardening process. Int J Adv Manuf Technol 38(1–2):48–58

    Article  Google Scholar 

  5. Nguyen T, Zhang LC (2010) Realisation of grinding-hardening in workpieces of curved surfaces—part 1: plunge cylindrical grinding. Int JMach Tools Manuf 51(4):309–319

    Article  Google Scholar 

  6. Kolkwitz B, Föckerer T, Heinzel C, Zäh MF, Brinksmeier E (2011) Experimental and numerical analysis of the surface integrity resulting from outer-diameter grind-hardening. Procedia Eng 19:222–227

    Article  Google Scholar 

  7. Föckerer T, Kolkwitz B, Heinzel C, Zäh MF (2012) Experimental and numerical analysis of transient behaviour during grind-hardening of AISI 52100. Prod Eng 6(6):559–568

    Article  Google Scholar 

  8. Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press, New York

    Google Scholar 

  9. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. ProcRSoc New South Wales 76:203–224

    Google Scholar 

  10. Maksoud TMA (2005) Heat transfer model for creep-feed grinding. J Mater Process Technol 168:448–463

    Article  Google Scholar 

  11. Jin T, Cai GQ (2001) Analytical thermal models of oblique moving heat source for deep grinding and cutting. J Manuf Sci Eng 123(2):185–190

    Article  Google Scholar 

  12. Doman D, Warkentin A, Bauer R (2009) Finite element modelling approaches in grinding. Int J Mach Tools Manuf 49(2):109–116

    Article  Google Scholar 

  13. M.Schneider (1999) Auswirkungen thermomechanischer Vorgänge beim Werkzeug-schleifen, University of Dortmund, (PhD Thesis)

  14. Lefebvre A, Lanzetta F, Lipinski P, Torrance AA (2012) Measurement of grinding temperatures using a foil/thermocouple. Int J Mach Tools Manuf 58:1–10

    Article  Google Scholar 

  15. Malkin S, Guo C (2007) Thermal analysis of grinding. Ann CIRP 56(2):760–782

    Article  Google Scholar 

  16. Föckerer T, Zäh MF, Zhang OB (2013) A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. Int J Heat Mass Transf 56:223–237

    Article  Google Scholar 

  17. Zäh MF, Brinksmeier E, Heinzel C, Huntemann J-W, Föckerer T (2009) Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions. Prod Eng 3(3):271–279

    Article  Google Scholar 

  18. Salonitis K, Chryssolouris G (2007) Cooling in grind-hardening operations. Int J Adv Manuf Technol 33(3-4):285–297

    Article  Google Scholar 

  19. Vincent Y, Jullien J, Gilles P (2005) Thermo-mechanical consequences of phase transformations in the heat-affected zone using a cyclic uniaxial test. Int J Solids and Struct 42(14):4077–4098

    Article  MATH  Google Scholar 

  20. Zhang Y, Ge P, Be W (2015) Plane grind-hardening distortion analysis and the effect to grind-hardening layer. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6612-y

    Google Scholar 

  21. FP Incropera, DP Dewitt (1990) Fundamentals of heat and mass transfer, third ed. John Wiley & Sons Inc

  22. Hollomon J, Jaffe L (1945) Time–temperature relations in tempering steel. Trans AIME 162:223–249

    Google Scholar 

  23. Rowe WB, Morgan MN, Qi HS, Zheng HW (1993) The effect of deformation on the contact area in grinding. Ann CIRP 42:409–412

    Article  Google Scholar 

  24. M. Noyen (2008) Analyse der mechanischen Belastungsverteilung in der Kontaktzone beim Längs-Umfangs-Planschleifen, University of Dortmund, (PhD Thesis)

  25. Brinksmeier E, Brockhoff T (1997) Advanced grinding processes for surface strengthening of structural parts. Mach Sci Technol 1(2):299–309

    Article  Google Scholar 

  26. (1973) Atlas zur Wärmebehandlung der Stähle (3), Zeit-Temperatur-Austenitisierung-Schaubilder, Verlag Stahleisen, Düsseldorf

  27. Leblond JB, Devaux J (1984) A new kinetic model for aniso-thermal metallurgical transformation in steels including effect of austenite grain size. Acta Metall 32(1):137–146

    Article  Google Scholar 

  28. Jin T, Rowe W, McCormack D (2002) Temperatures in deep grinding of finite workpieces. Int J Mach Tools Manuf 42:53–59

    Article  Google Scholar 

  29. Alonso U, Ortega N, Sanchez JA, Pombo I, Izquierdo B, Plaza S (2015) Hardness control of grind-hardening and finishing grinding by means of area-based specific energy. Int J Mach Tools Manuf 88:24–33

    Article  Google Scholar 

  30. García E, Méresse D, Pombo I, Harmand S, Sánchez JA (2014) Identification of heat partition in grinding related to process parameters, using the inverse heat flux conduction model. Appl Therm Eng 66(1–2):122–130

    Article  Google Scholar 

  31. Reti T, Felde I, Grum J, Colas R, Sanchez G, Moita de Deus A (2010) Extension of isothermal time-temperature parameters to non-isothermal conditions: application to the simulation of rapid tempering. Strojniški Vestn J Mech Eng 56(56):84–92

    Google Scholar 

  32. Grange RA, Braughman, RW (1956) Hardness of tempered martensite in carbon and low alloy steels. In: Transactions of American Society for Metals v. XLVII, 165-197

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiara Ortega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, N., Alonso, U., Sánchez, J.A. et al. Modelling of the hardening and finishing stages of grind-hardened workpieces. Int J Adv Manuf Technol 82, 435–449 (2016). https://doi.org/10.1007/s00170-015-7378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7378-6

Keywords

Navigation