Skip to main content
Log in

Modeling forced convection in the thermal simulation of laser cladding processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A comprehensive methodology for the implementation of thermal convection into the finite element (FE) analysis of laser direct energy deposition (DED) cladding is developed and validated. Improved convection modeling will produce improved thermal simulations, which will in turn yield more accurate results from subsequent models seeking to predict microstructural changes, deformation, or residual stresses. Two common convection implementations, considering no convection or free convection only, are compared to three novel forced convection methods: forced convection from heat transfer literature, forced convection from lumped capacitance experiments, and forced convection from hot-film anemometry measurements. During the cladding process, the exposed surface, the surface roughness, and total surface area change due to material deposition. The necessity of accounting for the evolution of the mesh surface in the FE convection model is investigated. Quantified error analysis shows that using any of the three forced convection methodologies improves the accuracy of the numerical simulations. Using surface-dependent hot-film anemometry measured convection yields the most accurate temperature history, with L 2 norm errors of 6.25−22.1 C and time-averaged percent errors of 2.80–12.4 %. Using a physically representative convection model applied to a continually evolving mesh surface is shown to be necessary for accuracy in the FE simulation of laser cladding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffith ML, Keicher DM, Atwood CL, Romero JA, Smugeresky JE, Harwell LD, Greene DL (1996) Free form fabrication of metallic components using laser engineered net shaping (lens). In: P. Solid Freeform Fab. Symp.s, volume 9, pages 125–131. The University of Texas at Austin

  2. Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of h13 tool steel for 3-d components. Jom-J Min Met Mat S 49(5):55–60

    Article  Google Scholar 

  3. Griffith ML, Schlienger ME, Harwell LD, Oliver MS, Baldwin MD, Ensz MT, Essien M, Brooks J, Robino CV, Smugeresky JE, Wert MJ, Nelson DV (1999) Understanding thermal behavior in the lens process. Mater Design 20(2):107–113

    Article  Google Scholar 

  4. Xue L, Islam MU (2000) Free-form laser consolidation for producing metallurgically sound and functional components. J Laser Appl 12:160

    Article  Google Scholar 

  5. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of inconel 625 superalloy: Microstructural evolution and thermal stability. Mat Sci Eng A 509(1):98–104

    Article  Google Scholar 

  6. Rombouts M, Maes G, Mertens M, Hendrix W (2012) Laser metal deposition of inconel 625: Microstructure and mechanical properties. J Laser Appl 24(5):052007

    Article  Google Scholar 

  7. Ueda Y, Yamakawa T (1971) Analysis of thermal elastic-plastic stress and strain during welding by finite element method. Trans Jpn Weld Soc 2(2):186–196

    Google Scholar 

  8. Ueda Y, Takahashi E, Fukuda K, Sakamoto K, Nakcho K (1976) Multipass welding stresses in very thick plates and their annealing, reduction from stress relief. Trans Jpn Weld Res Inst 5(2):179–189

    Google Scholar 

  9. Rybicki EF, Shadley JR A three-dimensional finite element evaluation of a destructive experimental method for determining through-thickness residual stresses in girth welded pipes. J Eng Mater Technol.;(United States) 108(2):1986

  10. Rybicki EF, Stonesifer RB (1979) Computation of residual stresses due to multipass welds in piping systems. J Press Vessel Tech 101(2):149–154

    Article  Google Scholar 

  11. Feng Z, Wang XL, Spooner S, Goodwin GM, Maziasz PJ, Hubbard CR, Zacharia T (1996) A finite element model for residual stress in repair welds.Technical report, Oak Ridge National Lab.,TN (United States)

  12. Michaleris P, DeBiccari A (1997) Prediction of welding distortion. Weld J Res Suppl 76(4):172s

    Google Scholar 

  13. Lindgren LE, Runnemalm H, Nom MO (1999) Simulation of multipass welding of a thick plate. Int J Numer Meth Eng 44(9):1301–1316

    Article  MATH  Google Scholar 

  14. Anca A, Fachinotti VD, Escobar-Palafox G, Cardona A (2011) Computational modelling of shaped metal deposition. Int J Numer Meth Eng 85(1):84–106

    Article  MATH  Google Scholar 

  15. Hoadley AFA, Rappaz M, Zimmermann M (1991) Heat-flow simulation of laser remelting with experimenting validation. Metall Trans B 22(1):101–109

    Article  Google Scholar 

  16. Hoadley AFA, Rappaz M (1992) A thermal model of laser cladding by powder injection. Metall Trans B 23(5):631–642

    Article  Google Scholar 

  17. Chin RK, Beuth JL, Amon CH (1996) Thermomechanical modeling of molten metal droplet solidification applied to layered manufacturing. Mech Mater 24(4):257–271

    Article  Google Scholar 

  18. Han L, Phatak KM, Liou FW (2004) Modeling of laser cladding with powder injection. Metall Trans B 35(6):1139–1150

    Article  Google Scholar 

  19. Pinkerton AJ, Li L (2004) An analytical model of energy distribution in laser direct metal deposition. Proc Inst Mech Eng B J Eng Manuf.e 218(4):363–374

    Article  Google Scholar 

  20. Ahsan MN, Pinkerton AJ (2011) An analytical—Numerical model of laser direct metal deposition track and microstructure formation. Model Simul Mater Sc 19(5):055003

    Article  Google Scholar 

  21. Bontha S, Klingbeil NW, Kobryn PA, Fraser HL (2006) Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J Mater Proces Tech 178(1):135–142

    Article  Google Scholar 

  22. Aggarangsi P, Beuth JL, Griffith ML (2003) Melt pool size and stress control for laser-based deposition near a free edge. In P. Solid Freeform Fab. Symp.s, pages 196–207. University of Texas, Austin, TX

  23. Han L, Phatak KM, Liou FW (2005) Modeling of laser deposition and repair process. J Laser Appl 17(2):89–99

    Article  Google Scholar 

  24. Cooper D, Jackson DC, Launder BE, Liao GX (1993) Impinging jet studies for turbulence model assessment i. flow-field experiments. J Heat Trans T ASME 36(10):2675–2684

    Google Scholar 

  25. Craft TJ, Graham LJW, Launder BE (1993) Impinging jet studies for turbulence model assessment ii. an examination of the performance of four turbulence models. J Heat Trans T ASME 36(10):2685–2697

    Google Scholar 

  26. Behnia M, Parneix S, Durbin PA (1998) Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate. J Heat Trans T ASME 41(12):1845–1855

    Google Scholar 

  27. Merci B, Dick E (2003) Heat transfer predictions with a cubic model for axisymmetric turbulent jets impinging onto a flat plate. J Heat Trans T ASME 46(3):469–480

    MATH  Google Scholar 

  28. Gauntner JW, Livingood J, Hrycak P (1970) Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. Washington, DC

  29. Livingood JNB, Hrycak P (1973) Impingement heat transfer from turbulent air jets to flat plates: a literature survey

  30. de Deus AM, Mazumder J (1996) Two-dimensional thermo-mechanical finite element model for laser cladding. In: Proceedings ICALEO, vol 1996, pp 174–183

  31. Vasinonta A, Beuth JL, Griffith M (2007) Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures. J Manuf Sci E.-T. ASME 129(1):101–109

    Article  Google Scholar 

  32. Dai K, Shaw L (2002) Distortion minimization of laser-processed components through control of laser scanning patterns. Rapid Prototyping J 8(5):270–276

    Article  Google Scholar 

  33. Wen S, Shin YC (2010) Modeling of transport phenomena during the coaxial laser direct deposition process. J Appl Phys 108(4):044908–044908

    Article  Google Scholar 

  34. Wen S, Shin YC (2011) Comprehensive predictive modeling and parametric analysis of multitrack direct laser deposition processes. J Laser Appl 23(2):022003

    Article  Google Scholar 

  35. Ghosh S, Choi J (2005) Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process. J Laser Appl 17(3):144–158

    Article  Google Scholar 

  36. Ghosh S, Choi J (2006) Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided dmd process. J Heat Trans -T ASME 128(7):662

    Article  Google Scholar 

  37. Zekovic S, Dwivedi R, Kovacevic R (2005) Thermo-structural finite element analysis of direct laser metal deposited thin-walled structures. In: P. Solid Freeform Fab. Symp.s. University of Texas, Austin, TX, pp 338–355

  38. Special Metals (2006) Inconel alloy 625. Technical Report Publication Number SMC-063

  39. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305

    Article  Google Scholar 

  40. Goldak J, Bibby M, Moore J, House R, Patel B (1986) Computer modeling of heat flow in welds. Metall Trans B 17(3):587–600

    Article  Google Scholar 

  41. Hojny M Thermo-mechanical model of a tig welding process for the aircraft industry. Arch Metall Mat 58(4):2013

  42. Wang L, Felicelli S (2006) Analysis of thermal phenomena in lens deposition. Mat Sci Eng A 435:625–631

    Article  Google Scholar 

  43. Omega Engineering Inc (1998) Non-contact temperature measurement vol 1 2nd ed.Technical Report Transactions Vol 1

  44. Omega Engineering Inc (2005) Revised thermocouple reference tables. Technical Report Publication Number z204–206

  45. Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60

    Article  Google Scholar 

  46. Goodell WV, Coulter JK, Johnson PB (1973) Optical constants of inconel alloy films. JOSA 63(2):185–188

    Article  Google Scholar 

  47. Heigel J (2014) Unpublished research. Technical report

  48. Saad NR, Douglas WJM, Mujumdar AS (1977) Prediction of heat transfer under an axisymmetric laminar impinging jet. Ind Eng Chem Fund 16(1):148–154

    Article  Google Scholar 

  49. Vorburger TV (1992) Methods for characterizing surface topography. Tutorials in Optics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Gouge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouge, M.F., Heigel, J.C., Michaleris, P. et al. Modeling forced convection in the thermal simulation of laser cladding processes. Int J Adv Manuf Technol 79, 307–320 (2015). https://doi.org/10.1007/s00170-015-6831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-6831-x

Keywords

Navigation