Skip to main content
Log in

Influence of complex structure on the shrinkage of part in investment casting process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Investment casting (IC) is traditionally used to produce high accuracy products, but the products gaining variable cross section, multidimensional, and unconstrained/constrained features make it hard to determine the tooling dimensions. Every individual stage in the investment casting process (ICP) also poses a potential and uncertain threat on the final part dimensions. In this article, a variable cross section, multidimensional and unconstrained/constrained part for IC, is designed and constructed. The dimensions of wax pattern and final casting part are measured by three-dimensional (3-D) laser scanning, and the inner cavity dimensions of the ceramic shell are measured by industrial computerized tomography (ICT). The dimensional changes and the change of shrinkage along with the dimensions in different processes are analyzed. Finally, the exponential relationship between shrinkage and dimension in the whole ICP is concluded, and the mechanisms of the dimensional changes are discussed. The conclusions can be used to guide the dimensional design of the die and the reworking of the wax pattern to reduce the trial-and-error procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pattnaik S, Karunakar DB, Jha PK (2013) Multi-characteristic optimization of wax patterns in the investment casting process using grey–fuzzy logic. Int J Adv Manuf Technol 67(5–8):1577–1587. doi:10.1007/s00170-012-4591-4

    Article  Google Scholar 

  2. Piwonka T, Wiest J (1998) Factors affecting investment casting pattern die dimensions. Incast USA 11(6):8–13

    Google Scholar 

  3. Wang YC, Li DY, Peng YH, Zeng XQ (2007) Numerical simulation of low pressure die casting of magnesium wheel. Int J Adv Manuf Technol 32(3–4):257–264. doi:10.1007/s00170-005-0325-1

    Article  Google Scholar 

  4. Wen JL, Yang YK, Jeng MC (2009) Optimization of die casting conditions for wear properties of alloy AZ91D components using the Taguchi method and design of experiments analysis. Int J Adv Manuf Technol 41(5–6):430–439. doi:10.1007/s00170-008-1499-0

    Article  Google Scholar 

  5. Ranjan R, Kumar N, Pandey R, Tiwari M (2004) Agent-based design framework for riser and gating system design for sound casting. Int J Prod Res 42(22):4827–4847. doi:10.1080/00207540410001733959

  6. Thammachot N, Dulyapraphant P, Bohez ELJ (2013) Optimal gating system design for investment casting of sterling silver by computer-assisted simulation. Int J Adv Manuf Technol 67(1–4):797–810. doi:10.1007/s00170-012-4523-3

    Article  Google Scholar 

  7. Gebelin JC, Jolly MR (2003) Modelling of the investment casting process. J Mater Process Technol 135(2):291–300

    Article  Google Scholar 

  8. Yarlagadda PK (2000) Prediction of die casting process parameters by using an artificial neural network model for zinc alloys. Int J Prod Res 38(1):119–139

    Article  MATH  Google Scholar 

  9. Yarlagadda PK, Wee LK (2006) Design, development and evaluation of 3D mold inserts using a rapid prototyping technique and powder-sintering process. Int J Prod Res 44(5):919–938. doi:10.1080/00207540500140880

  10. Moorwood G, Christodoulou P, Lahnam B, Byrnes D (2000) Contraction of investment cast H13 tool steel. Int J Cast Metals 12:457–467

    Google Scholar 

  11. Bonilla W, Masood SH, Iovenitti P (2001) An investigation of wax patterns for accuracy improvement in investment cast parts. Int J Adv Manuf Technol 18(5):348–356. doi:10.1007/s001700170058

    Article  Google Scholar 

  12. Mishra S, Ranjana R (2010) Reverse solidification path methodology for dewaxing ceramic shells in investment casting process. Mater Manuf Process 25(12):1385–1388

    Article  Google Scholar 

  13. Hock T, Trevor S, Christodoulou P, Yarlagadda P (2003) Experimental studies on the accuracy of wax patterns used in investment casting. Proc IME B J Eng Manufact 217(2):285–289

    Article  Google Scholar 

  14. Rahmati S, Akbari J, Barati E (2007) Dimensional accuracy analysis of wax patterns created by RTV silicone rubber molding using the Taguchi approach. Rapid Prototyp J 13(2):115–122. doi:10.1108/13552540710736803

    Article  Google Scholar 

  15. Morrell R, Quested PN, Jones S, Ford DA (2006) Dimensional stability of ceramic casting moulds. National Physical Laboratory

  16. Jiang J, Liu XY (2007) Dimensional variations of castings and moulds in the ceramic mould casting process. J Mater Process Technol 189(1):247–255

    Article  Google Scholar 

  17. Jiang W, Fan Z, Liao D, Dong X, Zhao Z (2010) A new shell casting process based on expendable pattern with vacuum and low-pressure casting for aluminum and magnesium alloys. Int J Adv Manuf Technol 51(1–4):25–34. doi:10.1007/s00170-010-2596-4

    Article  Google Scholar 

  18. Sabau A (2005) Numerical simulation of the investment casting process. Transactions of Trans Am Foundry Soc 113:407–417.

  19. Sabau AS (2006) Alloy shrinkage factors for the investment casting process. Metall Mater Trans B 37(1):131–140

    Article  Google Scholar 

  20. Sabau AS, Porter WD (2008) Alloy shrinkage factors for the investment casting of 17-4PH stainless steel parts. Metall Mater Trans B 39(2):317–330

    Article  Google Scholar 

  21. Chen X, Li D, Wu H, Tang Y, Zhao L (2011) Analysis of ceramic shell cracking in stereolithography-based rapid casting of turbine blade. Int J Adv Manuf Technol 55(5–8):447–455. doi:10.1007/s00170-010-3064-x

    Article  Google Scholar 

  22. Zhang DH, Jiang RS, Li JL, Wang WH, Bu K (2010) Cavity optimization for investment casting die of turbine blade based on reverse engineering. Int J Adv Manuf Technol 48(9–12):839–846

    Article  Google Scholar 

  23. Wu H, Li D, Chen X, Sun B, Xu D (2010) Rapid casting of turbine blades with abnormal film cooling holes using integral ceramic casting molds. Int J Adv Manuf Technol 50(1–4):13–19. doi:10.1007/s00170-009-2502-0

    Article  Google Scholar 

  24. Dong Y, Zhang D, Bu K, Dou Y, Wang W (2011) Geometric parameter-based optimization of the die profile for the investment casting of aerofoil-shaped turbine blades. Int J Adv Manuf Technol 57(9–12):1245–1258. doi:10.1007/s00170-011-3681-z

    Article  Google Scholar 

  25. Fu Z, Mo J (2010) Multiple-step incremental air-bending forming of high-strength sheet metal based on simulation analysis. Mater Manuf Process 25(8):808–816

    Article  Google Scholar 

  26. Martínez S, Cuesta E, Barreiro J, Álvarez B (2010) Analysis of laser scanning and strategies for dimensional and geometrical control. Int J Adv Manuf Technol 46(5–8):621–629

    Article  Google Scholar 

  27. Tsoukalas V (2008) Optimization of injection conditions for a thin-walled die-cast part using a genetic algorithm method. Proc IME B J Eng Manufact 222(9):1097–1106

    Article  Google Scholar 

  28. Everhart W, Lekakh S, Richards V, Smith J, Li H, Chandrashekhara K, Nam HZP (2012) Foam pattern aging and its effect on crack formation in investment casting ceramic shells Trans Am Foundry Soc 120:237–244.

  29. Song Y, Yan Y, Zhang R, Lu Q, Xu D (2002) Boundary model between casting and mould and its influence on the dimensional accuracy analysis of precision castings. Proc IME B J Eng Manufact 216(8):1123–1134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Jin.

Appendix

Appendix

1.1 Notation

a :

The fitting parameter

A :

The fitting parameter

b :

The fitting parameter

c :

The fitting parameter

D wax :

The diameter of wax pattern

D shell :

The diameter of shell

D casting :

The diameter of casting part

D0:

The inner diameter

D1:

The first external diameter

D2:

The second external diameter

D3:

The third external diameter

D4:

The fourth external diameter

D5:

The fifth external diameter

L die :

The dimensions of die

L wax :

The dimensions of wax pattern

L shell :

The dimensions of final casting part

L casting :

The dimensions of final casting part

S wax :

The shrinkage of wax in the wax injection process

S shell :

The shrinkage of shell in the dewaxing process

S casting :

The shrinkage of casting part in the casting process

S casting ‐ wax :

The shrinkage of the final casting part relative to wax pattern

S total :

The shrinkage of the final casting part relative to die

t :

The fitting parameter

T wax :

The thickness of wax pattern

T shell :

The thickness of shell

T casting :

The thickness of casting part

T1:

The thickness of first step

T2:

The thickness of second step

T3:

The thickness of third step

T4:

The thickness of fourth step

T5:

The thickness of fifth step

y 0 :

The fitting parameter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Jin, S., Lai, X. et al. Influence of complex structure on the shrinkage of part in investment casting process. Int J Adv Manuf Technol 77, 1191–1203 (2015). https://doi.org/10.1007/s00170-014-6523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6523-y

Keywords

Navigation