Skip to main content
Log in

A novel friction stir welding robotic platform: welding polymeric materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The relevance, importance and presence of industrial robots in manufacturing have increased over the years, with applications in diverse new and nontraditional manufacturing processes. This paper presents the complete concept and design of a novel friction stir welding (FSW) robotic platform for welding polymeric materials. It was conceived to have a number of advantages over common FSW machines: it is more flexible, cheaper, easier and faster to setup and easier to programme. The platform is composed by three major groups of hardware: a robotic manipulator, a FSW tool and a system that links the manipulator wrist to the FSW tool (support of the FSW tool). This system is also responsible for supporting a force/torque (F/T) sensor and a servo motor that transmits motion to the tool. During the process, a hybrid force/motion control system adjusts the robot trajectories to keep a given contact force between the tool and the welding surface. The platform is tested and optimized in the process of welding acrylonitrile butadiene styrene (ABS) plates. Experimental tests proved the versatility and validity of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neto P, Pereira D, Pires JN, Moreira AP (2013) Real-time and continuous hand gesture spotting: an approach based on artificial neural networks. In: Proc 2013 I.E. Int Conf Robotic Automation (ICRA 2013), pp 178-183, Karlsruhe, Germany

  2. Thomas WM, Nicholas ED, Needham JC, Church MG, Templesmith P, Dawes CJ (1991) Friction-stir butt welding. GB Patent 9125978.8, UK

  3. Lee RT, Liu CT, Chiou YC, Chen HL (2013) Effect of nickel coating on the shear strength of FSW lap joint between Ni-Cu alloy and steel. J Mater Process Technol 213(1):69–74

    Article  Google Scholar 

  4. Sonne MR, Tutum CC, Hattel JH, Simar A, Meester B (2013) The effect of hardening laws and thermal softening on modelling residual stresses in FSW of aluminum alloy 2024-T3. J Mater Process Technol 213(3):477–486

    Article  Google Scholar 

  5. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50:1–78

    Article  Google Scholar 

  6. Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Strauss AM (2013) Friction stir welding: process, automation, and control. J Manuf Process, 2013

  7. Fleming PA, Hendricks CE, Cook GE, Wilkes DM, Strauss AM, Lammlein DH (2010) Seam-tracking for friction stir welded lap joints. J Mater Eng Perform 19(8):1128–1132

    Article  Google Scholar 

  8. Zimmer S (2008) Contribution a l’industrialisation du soudage par friction malaxage. PhD thesis, Arts et Métiers ParisTech, Paris, France

  9. Okawa Y, Taniguchi M, Sugii H, Marutani Y (2006) Development of 5-axis friction stir welding system. In: Proc SICE-ICASE Int Joint Conf 2006, pp 1266-1269, Busan, Korea

  10. Mustafa SK, Pey YT, Yang G, Chen I (2010) A geometrical approach for online error compensation of industrial manipulator. In: IEEE/ASME Int Conf Adv Intell Mechatron, pp 738-743, Montreal, Canada

  11. Heisel U, Richter F, Wurst KH (1997) Thermal behavior of industrial robots and possibilities for errors compensation. CIRP Ann Manuf Technol 46(1):283–286

    Article  Google Scholar 

  12. Gong C, Yuan J, Ni J (2000) Nongeometric error identification and compensation for robotic system by inverse calibration. Int J Mach Tool Manuf 40(14):2119–2137

    Article  Google Scholar 

  13. Ruderman M, Hoffmann F, Bertram T (2009) Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans Ind Electron 56(10):3840–3847

    Article  Google Scholar 

  14. Soron M, Lahti KE (2009) Robotic friction stir welding of complex components using RosioTM. Svetsaren 64(1):13–15

    Google Scholar 

  15. Fleming PA, Lammlein D, Wilkes D, Fleming K, Bloodworth T, Cook G, Strauss A, DeLapp D, Lienert T, Bement M, Prater T (2008) In-process gap detection in friction stir welding. Sens Rev 28(1):62–77

    Article  Google Scholar 

  16. Yavuz H (2004) Function-oriented design of a friction stir welding robot. J Intell Manuf 15:761–775

    Article  Google Scholar 

  17. Soron M, Kalaykov I (2006) A robot prototype for friction stir welding. In: Proc 2006 I.E. Conf Robot Autom Mechatron, pp 1-5

  18. Smith CB (2000) Robotic friction stir welding using a standard industrial robot. In: Proc 2nd Int Symp Frict Stir Weld

  19. Zhao X, Kalya P, Landers RG, Krishnamurthy K (2007) Design and implementation of a nonlinear axial force controller for friction stir welding processes. In: Proc. 2007 American Contr Conf, pp 5553-5558, New York, USA

  20. Longhurst WR (2009) Force control of friction stir welding. PhD thesis, University of Vanderbilt, Nashville, TN

  21. Longhurst WR, Strauss AM, Cook GE, Fleming PA (2010) Torque control of friction stir welding for manufacturing and automation. Int J Adv Manuf Technol 51:905–913

    Article  Google Scholar 

  22. Longhurst WR, Strauss AM, Cook GE (2010) Enabling automation of friction stir welding: the modulation of weld seam input energy by traverse speed force control. J Dyn Syst Meas Control 132:1–11

    Article  Google Scholar 

  23. Zhao X, Kalya P, Landers RG, Krishnamurthy K (2009) Path force control for friction stir welding processes. Air Force Res Lab Rep, AFRL-RX-WP-TP-2009-4127, pp 1-8, Wright-Patterson, USA

  24. Marcotte O, Abeele LV (2010) 2D and 3D friction stir welding with articulated robot arm. In: Proc 8th Int Symp Frict Stir Weld 2010. Timmendorfer, Germany, pp 778–797

    Google Scholar 

  25. Backer JD, Christiansson AK, Oqueka J, Bolmsjö G (2012) Investigation of path compensation methods for robotic friction stir welding. Ind Robot 39(6):601–608

    Article  Google Scholar 

  26. Bres A, Monsarrat B, Dubourg L, Birglen L, Perron C, Jahazi M, Baron L (2010) Simulation of friction stir welding using industrial robots. Ind Robot 37(1):36–50

    Article  Google Scholar 

  27. Neto DM, Neto P (2013) Numerical modeling of friction stir welding process: a literature review. Int J Adv Manuf Technol 65(1–4):115–126

    Article  Google Scholar 

  28. Crawford R, Cook GE, Strauss AM, Hartman DA (2006) Modelling of friction stir welding for robotic implementation. Int J Model Identif Control 1(1):101–106

    Article  Google Scholar 

  29. Mendes N, Loureiro A, Martins C, Neto P, Pires JN (2014) Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater Des 58:457–464

    Article  Google Scholar 

  30. Cook GE, Crawford R, Clark DE, Strauss AM (2004) Robotic friction stir welding. Ind Robot 31(1):55–63

    Article  Google Scholar 

  31. Zimmer S, Langlois L, Goussain JC, Martin P, Bigot R (2010) Determining the ability of high payload robot to perform FSW applications. In: Proc 8th Int Symp Frict Stir Weld 2010. Timmendorfer, Germany, pp 755–762

    Google Scholar 

  32. Backer JD, Soron M, IIal T, Christiansson AK (2010) Friction stir welding with robot for light weight vehicle design. In: Proc 8th Int Symp Frict Stir Weld 2010, pp 14-24, Timmendorfer, Germany

  33. Strombeck A, Shilling C, Santos J (2000) Robotic friction stir welding—tool technology and applications. In: Proc 2nd Frict Stir Weld Int Symp, Gothenburg, Sweden

  34. Fleming PA, Hendricks CE, Wilkes DM, Cook GE, Strauss AM (2009) Automatic seam-tracking of friction stir welded T-joints. Int J Manuf Technol 45:490–495

    Article  Google Scholar 

  35. Cook G, Smartt H, Mitchell J, Strauss A, Crawford R (2003) Controlling robotic friction stir welding. Weld J 82:28–34

    Google Scholar 

  36. Smith CB, Hinrichs JF, Crusan A (2003) Robotic friction stir welding: state of the art. In: Proc 4th Frict Stir Weld Int Symp

  37. Strand SR (2004) Effects of friction stir welding on polymer microstructure. MS thesis, Brigham Young University, Provo, UT

  38. Mendes N, Neto P, Pires JN, Loureiro A (2013) An optimal fuzzy-PI force/motion controller to increase industrial robot autonomy. Int J Adv Manuf Technol 68(1–4):435–441

    Article  Google Scholar 

  39. Mendes N, Neto P, Pires JN, Loureiro A (2013) Discretization and fitting of nominal data for autonomous robots. Expert Syst Appl 40(4):1143–1151. doi:10.1016/j.eswa.2012.08.023

    Article  Google Scholar 

  40. Neto P, Mendes N (2013) Direct off-line robot programming via a common CAD package. Robot Auton Syst 61(8):896–910

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mendes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(MPG 5,136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, N., Neto, P., Simão, M.A. et al. A novel friction stir welding robotic platform: welding polymeric materials. Int J Adv Manuf Technol 85, 37–46 (2016). https://doi.org/10.1007/s00170-014-6024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6024-z

Keywords

Navigation