Skip to main content
Log in

Advanced gas metal arc welding processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

There is an increased requirement in the automotive, food and medical equipment industries to weld heat-sensitive materials, such as thin sheets, coated thin plates, stainless steel, aluminium and mixed joints. Nevertheless, relevant innovations in arc welding are not widely known and seldom used to their maximum potential. In the area of gas metal arc welding welding processes, digitalisation has allowed integration of software into the power source, wire feeder and gas regulation. This paper reviews developments in the arc welding process, particularly the effect of the set-up of the welding process parameters on waveform deposition. It is found that good weldability, good mechanical joint properties and acceptable process efficiency can be obtained for thin sheets through advanced power source regulation, especially over short circuiting, controlled polarity and electrode wire motion. The findings presented in this paper are valuable for waveform and deposition prediction. The need is furthermore noted for an algorithm that integrates gas flow parameters and wire motion control, as well as a variable sensor on the tip of the electrode, permitting flexibility of control of the current and the voltage waveform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richards RW et al (1994) Metallurgy of continuous hot dip aluminizing. Int Mater Rev 39(5):191–212

    Google Scholar 

  2. Ghosh PK, Gupa SR, Randhawa HS (2000) Characteristics of pulsed-current, vertical-up gas metal arc welding in steel. Metall Mater Trans A 31(A):2247–2259

    Article  Google Scholar 

  3. Ueyama T (2010) Welding power sources. Weld Int 24(9):699–705

    Article  Google Scholar 

  4. Weman K (1999) Modern MIG welding power sources. ESAB welding Equipment AB, Laxa, Sweden, Svetsaren 1:77–79

  5. Dzelnitzki D (1999) Increasing the deposition volume or the welding speed?—Advantages of heavy-duty MAG welding. Weld Cut 9:197–204

    Google Scholar 

  6. Lancaster J (1984) The physics of welding. Phys Technol 15:73–79

    Article  Google Scholar 

  7. Norrish J (2003) A review of metal transfer classification in arc welding, Proc. Conf. IIW Doc, Bucharest

  8. Iordachescu D, Lusca W, Ponomarev V (2005) Classification of metal transfer modes in GMAW, Proc. Conf. IIW Doc, Prague

  9. Huisman G (1999) Introduction of a new MIG process—advantages and possibility. Proc. Conf. IIW 1999 Doc. 212

  10. Wu Y, Kovacevic R (2002) Mechanical assisted droplet transfer process in gas metal arc welding. Proceeding of the Institution of Mechanical Engineering. J Eng Manuf 216(B):555–564

    Article  Google Scholar 

  11. Himmelbauer K (2003) Digital welding, Fronius International. Proprietary reports

  12. Ngo MD, Duy VH et al (2007) Development of digital gas metal arc welding system. J Mater Process Technol 189:384–391

    Article  Google Scholar 

  13. Suban M, Tušek J (2001) Dependence of melting rate in MIG/MAG welding on type of shielding gas. J Mater Process Technol 119:185–192

    Article  Google Scholar 

  14. Robicheau R (1993) Pulsed welding of HY80/HY100 using the T.I.M.E, 5th CRAD Conference Proceeding, Defence Research and Development, Canada

  15. Uusitalo J (2007) Modified short arc process-new way of welding root passes, Economic and Ecological Aspects, Proceeding of the IIW International Conference: Welding & Materials-Technica. Dubrovnik & Cavtat, Croatia

    Google Scholar 

  16. Peltola T, Kumpulainen J, Veikkolainen M (2010) Novel tailored welding arcs help welders meet quality and productivity demands. Innovation and Business Development, Kemppi Oy, Lahti, pp 15–18

    Google Scholar 

  17. Kemppi Oy. Wise create more productive result. http://www.kemppi.com/inet/kemppi/kit.nsf/DocsPlWeb/BR_Wise_AD235_0940_EN.pdf/$file/BR_Wise_AD235_0940_EN.pdf. Accessed 30 Aug 2011

  18. Deutsch P, Uusitalo J (2009) Technology of safe root forming. Przegl spawalnictwa 7–8:52–55

    Google Scholar 

  19. Dodson DeRuntz BD (2003) Assessing the benefits of surface tension transfer welding to industry. J Ind Technol 19(4):1–8

    Google Scholar 

  20. Stava EK (1993) Surface tension transfer power source, a new, low-spatter arc welding machine. Weld J 72(1):25–29

    Google Scholar 

  21. Dodson D (1999) New welding rechnology eases FGD wallpapering. Power Eng 103(6):38–42

    Google Scholar 

  22. Srinivasan K, Balasubramanian V (2011) Effect of surface tension metal transfer on fume formation rate during flux-cored arc welding of HSLA steel. Int J Adv Manuf Technol 56(1–4):125–134

    Article  Google Scholar 

  23. Dunđer M, Samardžić I (2005) Monitoring of main welding parameters at STT welding process, 9th International Research/Expert Conference, Trends in the Development of Machinery and Associated Technology, TMT 2005, Turkey, 26–30 Septembre

  24. Miller Electric Mfg. Co (2004) Software-driven RMD™ process overcomes short circuit MIG limitations. http://www.millerwelds.com/about/news_releases/2004_archive/articles82.html. Accessed 30 Aug 2012

  25. Miller Electric Mfg. Co (2003) Miller introduces Axcess multi-MIG systems—most significant welding invention since the inverter. http://www.millerwelds.com/about/news_releases/2005/articles140.html. Accessed 30 Aug 2012

  26. Peterson N (2009) New technology doubles contractor’s pipe welding output. Weld J 2009:56–57

    Google Scholar 

  27. Petro SJ (2011) Effect of interpass temperature on the structure and properties of multipass weldments in high performance nickel alloys. PhD dissertation. Colorado State University, Fort Collins, 2 May 2011

  28. Goecke SF (2005) Low energy arc joining process for material sensitive to heat, GST (Große Schweißtechnische Tagung). EWM, Mündersbach

    Google Scholar 

  29. Matusiak J, Pfeifer T (2011) The research of technological and environmental conditions during low-energetic gas-shielded metal arc welding of aluminium alloys. Weld Int. doi:10.1080/09507116.2011.600040

  30. EMW Hightec Welding (2007) Simply more—EWM coldArc, 11 2007. Available: http://www.ewm-group.com. Accessed Aug 2011

  31. Merkle, The Merkle ColdMIG Process. http://en.merkle.de/_images/uploaded/editor/File/ColdMIG%20Flyer_GB.pdf. Accessed 14 June 2011

  32. Migatronic, IAC brochure, SIGMA GALAXY. http://www.migatronic.com/media/leafletsuk/52170035.pdf. Accessed 17 July 2011

  33. Migatronic, Gap Welding Spatter-free lamination. Optimal pipe root welding. http://www.welder.or.kr/Technical/201011/Migatronic/Migatronic.html. Accessed 17 Jul 2011

  34. Panasonic, The arc welding robotic solution. http://www.panasonicfa.com/pdfs/TAWERS_tech_specs.pdf. Accessed 4 June 2011

  35. Akira S (2011) Welding seminar, Panasonic Welding System Co. Ltd., 6 June 2011

  36. Panasonic, The arc of welding robot system. http://www.panasonicfa.com/pdfs/TAWERS_tech_specs.pdf. Accessed 5 June 2011

  37. Lertora E, Gambaro C, Cypres P (2011) The influence of robotic MAG process welding parameters. Weld Int 25(10):767–776

    Article  Google Scholar 

  38. ERA T et al. (2008) Welding sheet with a modified short circuiting process, AWS Detroit Section’s Sheet Metal Welding Conference XIII, May 14–16, Livonia, Mich

  39. Potesser M et al (2006) The characterization of the intermetallic Fe–Al layer of steel–aluminum weldings, EPD Congress 2006. TMS-Minerals Metals and Materials Society, San Antonio, 12–16 March 2006

    Google Scholar 

  40. Furukawa K (2006) New CMT arc welding process—welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets. Weld Int 20(6):440–445

    Article  Google Scholar 

  41. Trommer G (2009) Fronius: technologie—und anwendungsinnovationen mit dem, CMT avanced—prozess. Weld Cut Today 2:12–15

    Google Scholar 

  42. Zhang HT et al (2009) The arc characteristics and metal transfer behavior of cold metal transfer and its use in joining aluminium to zinc-coated steel. Mater Sci Eng, A 499(1–2):111–113

    Google Scholar 

  43. Doneth W (2010) Welding thin with GMAW. http://www.thefabricator.com/article/arcwelding/welding-thin-with-gmaw. Accessed 10 March 2011

  44. Potesser M et al (2006) The characterization of the intermetallic Fe–Al layer of steel–aluminum weldings, TMS (The Minerals, Metals & Materials Society). University of Leoben, Austria

    Google Scholar 

  45. Maritime-executive (2009) Reaching the limit of arc welding. http://www.maritime-executive.com/pressrelease/latest-news-fronius-international-gmbh/. Accessed 10 July 2011

  46. Fronius (2010) CMT Advanced notches up further successes. http://www.fronius.com/cps/rde/xchg/SID-54985C4A-EA7E18B8/fronius_international/hs.xsl/79_19829_ENG_HTML.htm. Accessed 30 May 2011

  47. Pickin CG, Young K (2006) Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci Technol Weld Join 11(5):583–585

    Article  Google Scholar 

  48. Zhang HT, Feng JC, He P, Hackl H (2007) Interfacial microstructure and mechanical properties of aluminium-zinc-coated steel steel joints made by a modified metal inert gs welding-brazing process. Mater Charact 59:588–592

    Article  Google Scholar 

  49. Grzybicki M, Jakubowski J (2011) Comparative tests of steel car body sheet welds made using CMT and MIG/MAG methods. Weld Int. doi:10.1080/09507116.2011.606147

  50. SKS welding system (2010) Heat-reduced welding with defined penetration, virtually spatterfree, SKS Info

  51. Barabás P, Klein M, Nagy F (2011) MicroMIG™—alacsony hőbevitelű eljárás robothegesztéshez. http://www.rehm.hu/download/szakkonyvtar/micromig.pdf. Accessed 15 June 2011

  52. Harwig DD (2006) Arc behavior and melting rate in the VP-GMAW process. Welding Journal 85(3):52–62

    Google Scholar 

  53. Harwig D D, (2003) Arc behavior and metal transfer in the VP-GMAW process, Dissertation (Ph.D.). Cranfield University, Cranfield

  54. Harwig DD, Dierksheide JE, Yapp D, Blackman S (2002) Melting rate analysis of the VP-GMAW process. Cooperative Research Program-EWI. Summary Report December 2002

  55. Zhang HT, Feng JC, He P, Zhang BB, Chen JM, Wang L (2009) The arc characteristics and metal transfer behaviour of cold metal transferand its use in joining aluminium to zinc-coated steel. Mater Sci Eng 499:111–113

    Article  Google Scholar 

  56. Lee KJ, Kumai S, Arai T, Aizawa T (2007) Interfacial microstructure and strength of steel/aluminium alloy lap joint frabricated by magnetic pressure seam welding. Mater Sci Eng 471:95–101

    Article  Google Scholar 

  57. Hyoung JP, Sehun R, Mun JK, Dong CK (2009) Joining of steel to aluminum alloy by AC pulse MIG welding. Mater Trans 50(9):2314–2317

    Article  Google Scholar 

  58. Jaskulski K (2010) Robotyzacje OTC z wykorzystaniem niskoenergetycznych metod spawania. http://www.sap.poznan.pl/fotki/File/DW300%281%29.pdf. Accessed Jul 2011

  59. Harada S, Ueyama T, Mita T, Innami VT, Ushio M (1999) The state-of-the-art of AC-GMAW process in Japan, Pro Conf. IIW, Doc. XIII-1589–99

  60. DW 300 OTC Daihen, Highly Advanced AC MIG Technology for input heat control. http://www.nachirobotics.com/media/applications_autogen/DW300.pdf. Accessed 28 June 2011

  61. Tong H, Ueyama T, Ushio M (2002) Improvement of aluminium alloy sheet metal welding quality and productivity with AC pulsed MIG welding system (Report 2). Weld Int 16(2):104–109

    Article  Google Scholar 

  62. Xiaozhu (2007) variable polarity MIG/MAG welding waveform control sheet. http://web.weld21.com/wz/lunwen/20070713212135.html. Accessed 2 Oct 2011

  63. Cloos, Cold process. http://www.cloos.de/cloos/en/produkte/prozess/cold_weld/index.php. Accessed 12 Jul 2011

  64. Belgian Welding Institute (BIL) (2009) Cold Process Principe, BIL-OCAS 2007–2009

  65. Praveen P, Yarlagadda PKDV, Kang MJ (2005) Advancements in pulse gas metal arc welding. J Mater Process Technol 164–165:1113–1119

    Article  Google Scholar 

  66. Zhang YM, Liguo E, Kovacevic R (1998) Active metal transfer control by monitoring excited droplet oscillation. Weld J 77(9):388–395

    Google Scholar 

  67. Ferraresi VA, Figueiredo KM, Hiap Ong T (2003) Metal transfer in the aluminum gas metal arc welding. J Braz Soc Mech Sci Eng 25(3):229–234

    Article  Google Scholar 

  68. Ponomarev V, Scotti A, Silvinskiy A, Al-Erhayem O (2003) Atlas of MIG/MAG welding metal transfer modes, Proc conf IIW, Doc. XII-1771 to 1775–03, Bucharest

  69. Pfeifer T, Rykała J (2011) Robotic welding of thin-walled aluminium alloy elements using low-energy welding methods. Welding International. pp. 1–6

  70. Kursen T (2011) Effect of the GMAW and GMAW-P welding processes on microstructure, hardness, tensile and impact strength of AISI 1030 steel Joint frabricated by ASP316L austenitic stainless steel filler metal. Arch Metall Mater 56(4). doi:10.2478/v10172-011-0105-x

  71. Armao FG (2002) Design & fabrication of aluminum automobiles. Weld Innov XIX(2)

  72. ESAB (2004) ESAB Aristo Superpulse expands pulse MIG/MAG. http://www.esab.ch/global/en/news/ESAB-Aristo-SuperPulse-expands-pulse-MIGMAG.cfm. Accessed 28 June 2011

  73. Anderson T (2009) Aluminium Q&A. Weld J 87(2):20–23

    Google Scholar 

  74. Begg D (2007) Evaluation of advanced gas metal arc welding and distortion mitigation techniques for thin panel steel and aluminium structure. BMT FLeet Technology Limited, Kanata

    Google Scholar 

  75. Erlandson D (2007) Les fondamentaux du procédé MIG/MAG-Le soudage MIG/MAG en general- Les types d’arc, ESAB AB Welding Equipment AB, Laxå

    Google Scholar 

  76. da Costa Pépe NV(2010) Advanced in gas metal arc welding and application to corrosion resistance alloy pipes. Dissertation (PhD). Cranfield University, Cranfield, March 2010

  77. Lucas D (2010) Finding the right steps to purge the purge from P91 procedure. http://www.thefabricator.com/article/arcwelding/no-purge-no-problem. Accessed 16 Jul 2011

  78. Oy ESAB (2012) Example of setting based on material and thicknesses. ESAB Finland, Helsinki

    Google Scholar 

  79. N CNC Product (2007) CP cold welding thin plate technology. http://www.cncproduct.com/tech/detail/4478.html#. Accessed 11 Oct 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kah, P., Suoranta, R. & Martikainen, J. Advanced gas metal arc welding processes. Int J Adv Manuf Technol 67, 655–674 (2013). https://doi.org/10.1007/s00170-012-4513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4513-5

Keywords

Navigation