Skip to main content
Log in

Ultrasonic slot machining of a silicon carbide matrix composite

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Rotary ultrasonic slot machining (RUSM) of ceramic matrix composites is explored. A comparison is made between RUSM and conventional diamond grinding by studying the effects of material removal rate (MRR) on process forces, tool wear and surface roughness. It was shown that RUSM leads to a significant decrease in process cutting forces and tool wear in comparison to the conventional machining process. Furthermore, the influences of diamond tool characteristics on surface roughness and tool wear are also ascertained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corman GS, Luthra KL (2005) Silicon melt infiltrated ceramic composites (HiPerCompTM). Handbook of ceramic composites. Springer, US, In, pp 99–115

    Google Scholar 

  2. Hu P, Zhang JM, Treadwell C (2002) Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J Mater Process Technol 129(1–3):339–344

    Article  Google Scholar 

  3. Daus N-A (2004) Ultraschallunterstütztes Quer-Seiten-Schleifen Berichte aus dem Produktionstechnischen Zentrum. Fraunhofer IRB Verlag, Berlin

    Google Scholar 

  4. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tool Manuf 38(4):239–255

    Article  Google Scholar 

  5. Komaraiah M, Reddy PN (1991) Rotary ultrasonic machining—a new cutting process and its performance. Int J Prod Res 29(11):2177–2187

    Article  MATH  Google Scholar 

  6. Prabhakar D (1990) Machining of advanced ceramic materials using rotary ultrasonic machining process. University of Illinois at Urbana–Champaign

  7. Hocheng H, Tai NH, Liu CS (2000) Assessment of ultrasonic drilling of C/SiC composite material. Compos Appl Sci Manuf 31(2):133–142

    Article  Google Scholar 

  8. Li ZC, Jiao Y, Deines TW, Pei ZJ, Treadwell C (2005) Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments. Int J Mach Tool Manuf 45(12–13):1402–1411

    Article  Google Scholar 

  9. Jianxin D, Taichiu L (2002) Ultrasonic machining of alumina-based ceramic composites. J Eur Ceram Soc 22(8):1235–1241

    Article  Google Scholar 

  10. Li ZC, Pei ZJ, Sisco T, Micale AC, Treadwell C (2007) Experimental study on rotary ultrasonic machining of graphite/epoxy panel. Proceedings of ASPE Spring Topical Meeting

  11. Jiao Y, Liu WJ, Pei ZJ (2005) Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis. J Manuf Sci Eng 127(4):752–758

    Article  Google Scholar 

  12. Singh R, Khamba JS (2007) Investigation for ultrasonic machining of titanium and its alloys. J Mater Process Technol 183(2–3):363–367

    Article  Google Scholar 

  13. Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol 34(1):131–140

    Article  Google Scholar 

  14. Churi NJ, Pei ZJ, Treadwell C (2006) Rotary ultrasonic machining of titanium alloy: effects of machining variables. Mach Sci Technol 10:301–321

    Article  Google Scholar 

  15. Neugebauer R, Stoll A (2004) Ultrasonic application in drilling. J Mater Process Technol 149(1–3):633–639

    Article  Google Scholar 

  16. Pei ZJ, Prabhakar D, Ferreira PM (1995) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J Eng Ind Trans ASME 117(2):142–151

    Article  Google Scholar 

  17. Pei ZJ, Ferreira PM, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Technol 48(1–4):771–777

    Article  Google Scholar 

  18. Pei ZJ, Ferreira PM (1998) Modeling of ductile-mode material removal in rotary ultrasonic machining. Int J Mach Tool Manuf 38(10–11):1399–1418

    Article  Google Scholar 

  19. Pei ZJ, Ferreira PM, Kapoor SG, Haselkorn M (1995) Rotary ultrasonic machining for face milling of ceramics. Int J Mach Tool Manuf 35(7):1033–1046

    Article  Google Scholar 

  20. Pei ZJ, Ferreira PM (1999) An experimental investigation of rotary ultrasonic face milling. Int J Mach Tool Manuf 39(8):1327–1344

    Article  Google Scholar 

  21. Uhlmann E, Daus N (2000) Ultrasonic assisted face grinding and cross-periphal grinding of ceramics. Proceedings of the 7th International Symposium on Ceramics Materials and Components for Engines

  22. Marinescu ID, Hitchiner M, Uhlmann E, Rowe WB, Inasaki I (2006) Handbook of machining with grinding wheels. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  23. Sauer H (2004) Tool with an oscillating head, US Patent Application 20080041604

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostyantyn Malukhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertsche, E., Ehmann, K. & Malukhin, K. Ultrasonic slot machining of a silicon carbide matrix composite. Int J Adv Manuf Technol 66, 1119–1134 (2013). https://doi.org/10.1007/s00170-012-4394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4394-7

Keywords

Navigation