Skip to main content
Log in

Failure mechanisms and cutting characteristics of brazed single diamond grains

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The knowledge about the cutting characteristics and the critical loading of brazed diamonds is essential for a safe and economic application of engineered grinding tools. Scratch tests were performed with single grains. The experiments were conducted with standard polyhedral diamond grains of different sizes, ranging from 300 to 850 μm, brazed with an Ag-Cu-based and a Cu-Sn-based active filler alloy onto a steel pin. Two failure mechanisms were revealed, namely “grain pullout” and “grain fracture”. Large grits mainly fail by grain fracture, whereas the smaller ones were mostly pulled out. This trend is supported by a simple mechanical model. The critical values, i.e. cutting force/scratch area, for grain fracture and grain pullout show a decrease with bigger grit size. Scratches are also analysed in terms of cutting characteristics. The dependency of the cutting and the normal force on the scratch area can be described by a power law with powers ranging between about 0.2 and 0.7, respectively. The measured cutting forces strongly depend on the rake angle, which was tested for −19.5° and −35.3°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Machining (1989) Metals handbook, vol 16. American Society for Metals, Materials Park

    Google Scholar 

  2. Malkin S, Guo C (2008) Grinding technology, vol XII, 2nd edn. Industrial Press, Inc., New York, p 372

    Google Scholar 

  3. Shaw MC (1996) Principles of abrasive processing. Oxford series on advanced manufacturing, vol XVIII. Clarendon, Oxford, p 574 S

    Google Scholar 

  4. Burkhard G (2001) Beitrag zur Optimierung von einschichtigen Abrasivwerkzeugen. PhD-Thesis, Eidgenössische Technische Hochschule Zürich ETHZ, Switzerland

  5. Burkhard G, Rehsteiner F (2002) High efficiency abrasive tool for honing. CIRP 51(1):271–274

    Article  Google Scholar 

  6. Chattopadhyay AK, Chollet L, Hintermann HE (1991) Experimental investigation on induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere. J Mater Sci 26(18):5093–5100

    Article  Google Scholar 

  7. Chattopadhyay AK, Chollet L, Hintermann HE (1991) Induction brazing of diamond with Ni-Cr hardfacing alloy under argon atomosphere. Surf CoatTechnol 45(1–3):293–298

    Article  Google Scholar 

  8. Hintermann HE, Chattopadhyay AK (1992) New generation superabrasive tool with monolayer configuration. Diamond Relat Mater 1(12):1131–1143

    Article  Google Scholar 

  9. Pinto FW (2008) An experimental and numerical approach to investigate the machining performance of engineered grinding tools. PhD thesis, Eidgenössische Technische Hochschule Zürich ETHZ, Switzerland

  10. Sung JC, Sung M (2009) The brazing of diamond. Int J Refract Met Hard Mater 27:382–393. doi:10.1016/j.ijrmhm.2008.11.011

    Article  Google Scholar 

  11. Aurich JC, Braun O, Warnecke G (2003) Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation. CIRP 52(1):275–280

    Article  Google Scholar 

  12. Lee C, Ham J, Song M (2007) The interfacial reaction between diamond grit and Ni-based brazing filler metal. Mater Trans 48(4):889–891. doi:10.2320/matertrans.48.889

    Article  Google Scholar 

  13. Shiue RK, Buljan ST, Eagar TW (1997) Abrasion resistant active braze alloys for metal single layer technology. Sci Technol Weld Join 2(2):71–78

    Article  Google Scholar 

  14. Sung CM (1999) Brazed diamond grid: a revolutionary design for diamond saws. Diamond Relat Mater 8(8–9):1540–1543

    Article  Google Scholar 

  15. Huang H, Zhu HM, Xu XP (2004) Grinding of granite with three kinds of diamond tools. Key Eng Mater 259–2:146–150

    Article  Google Scholar 

  16. Xu JH, Ding WF, Qian F (2007) Shear strength of brazed joint between diamond grains and steel matrix using a Ni-Cr filler alloy. Key Eng Mater 329:501–506. doi:Issn 1013-9826

    Article  Google Scholar 

  17. Pinto FW, Vargas GE, Wegener K (2008) Simulation for optimizing grain pattern on engineered grinding tools. CIRP 57(1):353–356. doi:10.1016/j.cirp.2008.03.069

    Article  Google Scholar 

  18. Pinto FW, Wegener K, Kuster F, Kiser M (2005) Parameters to evaluate the differences between engineered and conventional grinding tools. 38th CIRP International Seminar of Manufacturing Systems Florianópolis, Brazil

  19. Wegener K, Pinto FW, Kuster F, Vargas GE, Transchel R (2010) Simulation zur Optimierung von Schleifwerkzeugen mit definierter Kornanordnung. Diamond Bus 2:28–33

    Google Scholar 

  20. Koshy P, Iwasaki A, Elbestawi MA (2003) Surface generation with engineered diamond grinding wheels: insights from simulation. CIRP 52(1):271–274

    Article  Google Scholar 

  21. Pinto FW, Wegener K, Kuster F, Wunder S, Kiser M (2005) Model to optimise the grain pattern of grinding discs with controlled positions of the abrasives. 8th CIRP International Workshop on Modeling of Machining Operations Chemnitz, Germany, pp 349–359

  22. Braun O, Warnecke G, Aurich JC (2005) Simulation-based development of a superabrasive grinding wheel with defined grain structure. In: Transactions of the North American Manufacturing Research Institution of SME 2005, vol 33. Transactions of the North American Manufacturing Research Institution of Sme. Society of Manufacturing Engineers, Dearborn, MI, pp 351–358

  23. Webster J, Tricard M (2004) Innovations in abrasive products for precision grinding. CIRP 53(2):597–617

    Article  Google Scholar 

  24. Aurich JC, Herzenstiel P, Sudermann H, Magg T (2008) High-performance dry grinding using a grinding wheel with a defined grain pattern. CIRP 57(1):357–362. doi:10.1016/j.cirp.2008.03.093

    Article  Google Scholar 

  25. Hagiwara S, Obikawa T (2002) Evaluation of edge fracture characteristics of diamond grains in stone grinding processes. Mach Sci Technol 6(1):53–66

    Article  Google Scholar 

  26. Keen D (1971) Some observations on wear of diamond tools used in piston machining. Wear 17(3):195–208

    Article  Google Scholar 

  27. Boadi JK, Yano T, Iseki T (1987) Brazing of pressureless-sintered SiC using Ag-Cu-Ti alloy. J Mater Sci 22(7):2431–2434. doi:10.1007/bf01082127

    Article  Google Scholar 

  28. Hao HQ, Jin ZH, Wang XT (1994) The influence of the brazing conditions on joint strength in Al2O3/Al2O3 bonding. J Mater Sci 29(19):5041–5046

    Article  Google Scholar 

  29. Nicholas MG, Mortimer DA, Jones LM, Crispin RM (1990) Someobservations on the wetting and bonding of nitride ceramics. J Mater Sci 25(6):2679–2689

    Article  Google Scholar 

  30. Liao YS, Luo SY (1992) Wear characteristics of sintered diamond composite during circular sawing. Wear 157(2):325–337

    Article  Google Scholar 

  31. Atkins AG (1999) Scaling laws for elastoplastic fracture. Int J Fract 95(1–4):51–65. doi:10.1023/a:1018683830486

    Article  Google Scholar 

  32. Herrmann HJ (1991) Fractures. In: Bunde H, Havlin S (eds) Fractals and disordered systems. Springer, Berlin, pp 175–205

    Chapter  Google Scholar 

  33. Bredell LJ, Prins JF (1982) Microcutting of steel, copper and zinc—a comparative study. Wear 82(1):127–135

    Article  Google Scholar 

  34. Bredell LJ, Prins JF (1982) Microcutting of steel using pyramidal diamonds with different apex angles. Wear 76(2):177–187

    Article  Google Scholar 

  35. Ohbuchi Y, Matsuo T (1991) Force and chip formation on single-grit orthogonal cutting with shaped cBN and diamond grains. CIRP 40(1):327–330

    Article  Google Scholar 

  36. Matsuo T, Toyoura S, Oshima E, Ohbuchi Y (1989) Effect of grain shape on cutting force in superabrasive single-grit tests. CIRP 38(1):323–326

    Article  Google Scholar 

  37. Brinksmeier E, Giwerzew A (2003) Chip formation mechanisms in grinding at low speeds. CIRP 52(1):253–258

    Article  Google Scholar 

  38. Akono AT, Ulm FJ (2011) Scratch test model for the determination of fracture toughness. Eng Fract Mech 78(2):334–342. doi:10.1016/j.engfracmech.2010.09.017

    Article  Google Scholar 

  39. Ulm FJ, James S (2011) The scratch test for strength and fracture toughness determination of oil well cements cured at high temperature and pressure. Cem Concr Res 41(9):942–946. doi:10.1016/j.cemconres.2011.04.014

    Article  Google Scholar 

  40. Akono AT, Reis PM, Ulm FJ (2011) Scratching as a fracture process: from butter to steel. Phys Rev Lett 106(20). doi:10.1103/PhysRevLett.106.204302

  41. Mizuhara H, Huebel E, Oyama T (1989) High-reliability joining of ceramic to metal. Am Ceram Soc Bull 68(9):1591–1599

    Google Scholar 

  42. Klotz UE, Liu CL, Khalid FA, Elsener HR (2008) Influence of brazing parameters and alloy composition on interface morphology of brazed diamond. Mater Sci Eng A 495:265–270

    Article  Google Scholar 

  43. Field JE (1979) The properties of diamond. Academic, London

    Google Scholar 

  44. Field JE (1992) Strength, fracture and erosion properties of diamond. In: Field JE (ed) The properties of natural and synthetic diamond. Academic, London, pp 473–513

    Google Scholar 

  45. Field JE (1994) Cleavage, fracture and tensile strength of diamond. In: Davies G (ed) Properties and growth of diamond. INSPEC, London, pp 36–51

    Google Scholar 

  46. Ikawa N, Shimada S, Ono T (1976) Microstrength of diamond. Technol Rep Osaka Univ 26(1276–1307):245–254

    Google Scholar 

  47. Kizikov ED, Kebko VP (1987) Microadditions to alloys of the system Cu-Sn-Ti. Met Sci Heat Treat 29(1–2):68–71

    Article  Google Scholar 

  48. Kizikov ED, Lavrinenko IA (1975) Investigations of Cu-Sn-Ti alloys used for bonding diamond abrasive tools. Met Sci Heat Treat 17(1–2):61–65

    Article  Google Scholar 

  49. Wegst C, Wegst M (2007) Nachschlagewerk Stahlschüssel. Verlag Stahlschüssel Wegst GmbH, Marbach

    Google Scholar 

  50. Luo SY, Liao YS (1995) Study of the behavoir of diamond saw-blades in stone processing. J Mater Process Technol 51(1–4):296–308

    Article  Google Scholar 

  51. Feng Z, Field JE (1989) Dynamic strengths of diamond grits. Ind Diam Rev 3:104–108

    Google Scholar 

  52. Field JE, Freeman CJ (1981) Strength and fracture properties of diamond. Philos Mag A 43(3):595–618

    Article  Google Scholar 

  53. Pugno NM (2005) The nanoscale strength of ultra nano crystalline diamond. Rev Adv Mater Sci 10(2):156–160

    Google Scholar 

  54. Suzuki T, Mitsui T, Fujino T, Kato M, Satake Y, Saito H, Kobayashi S (2009) Development of CNT-coated diamond grains using self-assembly techniques for improving electroplated diamond tools. In: Kuriyagawa T, Zhou L, Yan J, Yoshihara N (eds) Advances in Abrasive Technology XI, vol 389–390. Key Engineering Materials. pp 72–76

  55. Buhl S, Leinenbach C, Spolenak R, Wegener K (2010) Influence of the brazing parameters on microstructure, residual stresses and shear strength of diamond-metal joints. J Mater Sci 45(16):4358–4368. doi:10.1007/s10853-010-4260-7

    Article  Google Scholar 

  56. Buhl S, Leinenbach C, Spolenak R, Wegener K (2012) Microstructure, residual stresses and shear strength of diamond-steel-joints brazed with a Cu-Sn-based active filler alloy. Int J Refract Met Hard Mater 30(1):16–24

    Google Scholar 

  57. Klocke F, König W (2008) Band 1: Drehen, Fräsen, Bohren. Fertigungsverfahren. VDI-Verlag, Düsseldorf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Buhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhl, S., Leinenbach, C., Spolenak, R. et al. Failure mechanisms and cutting characteristics of brazed single diamond grains. Int J Adv Manuf Technol 66, 775–786 (2013). https://doi.org/10.1007/s00170-012-4365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4365-z

Keywords

Navigation