Skip to main content

Abstract

The breaking of solids caused by an external load is evidently a problem of technological importance and has been intensively studied for the last hundred years [5.1]. On very small length scales (≤ 10-6 m) fracture is a topic of materials science. From the electronic level [5.2] to the level of dislocations or grain boundaries [5.3] the mechanisms of fracture are highly material dependent. On very large length scales (≥ 10-1 m) the prevention of fracture is studied by engineers. There results are mainly based on experience and depend essentially on the application and the shape of the sample. On intermediate length scales the behavior of the solid can be described by the methods of applied mechanics, i.e., by continuous equations of motion. There exist on this level just a few types of different behaviors — for example elastic, plastic, viscoelastic — each given by its own set of differential equations containing some material-dependent parameters. The relatively general validity of the formalism makes the study of fracture in this intermediate (or mesoscopic) range of length scales particularly attractive to statistical physicists. If the reader wants to know more about recent developments in this direction I recommend [5.4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Liebowitz, ed.: Fracture, Vols. I–VII, (Academic, New York 1986)

    Google Scholar 

  2. C.L. Briant, R.P. Messmer: Phil. Mag. B 42, 569 (1980);

    Article  Google Scholar 

  3. M.E. Eberhart, D.D. Vvdensky: Phys. Rev. Lett. 58, 61 (1987)

    Article  ADS  Google Scholar 

  4. E.C. Aifantis: J. Eng. Mater. Technol. 106, 326 (1986)

    Article  Google Scholar 

  5. H.J. Herrmann, S. Roux, eds.: Statistical Models for the Fracture of Disordered Media (Elsevier, Amsterdam 1990)

    Google Scholar 

  6. D. Broek: Elementary Engineering Fracture Mechanics (Martinus NijhofF, Dordrecht 1986)

    Book  Google Scholar 

  7. W. Nowacki: Theory of Micropolar Elasticity, CISM Int. Center for Mechanical Sci., Courses and Lectures, No. 25 (Springer, Heidelberg 1970)

    Google Scholar 

  8. D.A. Kessler, J. Koplik, H. Levine: Adv. Phys. 37, 255 (1988)

    Article  ADS  Google Scholar 

  9. H. Van Damme, E. Alsac, C. Laroche: C.R. Acad. Sci., Ser.II 309, 11 (1988):

    Google Scholar 

  10. H. Van Damme, in: The Fractal Approach to Heterogeneous Chemistry, ed. by D. Avnir (Wiley, New York 1989), p. 199

    Google Scholar 

  11. L.D. Landau, E.M. Lifshitz: Elasticity (Pergamon, Oxford 1960), p. 130

    Google Scholar 

  12. M. Barber, J. Donley, J.S. Langer: Phys. Rev. A 40, 366 (1989)

    Article  ADS  Google Scholar 

  13. S.S. Rao: The Finite Element Method in Engineering (Pergamon, Oxford 1982);

    MATH  Google Scholar 

  14. P. Tong, J.N. Rossettos: Finite Element Method: Basic Technique and Implementation (MIT Press, Cambridge 1977)

    Google Scholar 

  15. G.G. Batrouni, A. Hansen: J. Stat. Phys. 52, 747 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. L. de Arcangelis, S. Redner, H.J. Herrmann: J. de Phys. Lett. 46, L585 (1985)

    Article  Google Scholar 

  17. L. Niemeyer, L. Pietronero, H.J. Wiesmann: Phys. Rev. Lett. 52, 1033 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Takayasu, in: Fractals in Physics, ed. by L. Pietronero, E. Tossatti (Elsevier, Amsterdam 1986), p. 181;

    Google Scholar 

  19. H. Takayasu: Phys. Rev. Lett. 54, 1099 (1985)

    Article  ADS  Google Scholar 

  20. S. Feng, P.N. Sen: Phys. Rev. Lett. 52, 216 (1984)

    Article  ADS  Google Scholar 

  21. Y. Kantor, I. Webman: Phys. Rev. Lett. 52, 1891 (1984)

    Article  ADS  Google Scholar 

  22. S. Roux, E. Guyon: J. de Phys. Lett. 46, L999 (1985)

    Article  Google Scholar 

  23. R.J. Roark, W.C. Young: Formulas for Stress and Strain (McGraw-Hill, Tokyo 1975), p. 89

    Google Scholar 

  24. H. Yan, G. Li, L.M. Sander: Europhys. Lett. 10, 7 (1989)

    Article  ADS  Google Scholar 

  25. E. Louis, F. Guinea, F. Flores, in: Fractals in Physics, ed. by L. Pietronero, E. Tossatti (Elsevier, Amsterdam 1986);

    Google Scholar 

  26. E. Louis, F. Guinea: Europhys. Lett. 3, 871 (1987)

    Article  ADS  Google Scholar 

  27. P. Meakin: Thin Solid Films 151, 165 (1987)

    Article  ADS  Google Scholar 

  28. P. Meakin, G. Li, L.M. Sander, E. Louis, F. Guinea: J. Phys. A 22, 1393 (1989)

    Article  ADS  Google Scholar 

  29. B. Kahng, G.G. Batrouni, S. Redner, L. de Arcangelis, H.J. Herrmann: Phys. Rev. B 37, 7625 (1988)

    Article  ADS  Google Scholar 

  30. P.M. Duxbury, P.D. Beale, P.L. Leath: Phys. Rev. Lett. 57, 1052 (1986);

    Article  ADS  Google Scholar 

  31. P.M. Duxbury, P.L. Leath, P.D. Beale: Phys. Rev. B 36, 367 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  32. P.D. Beale, D.J. Srolovitz: Phys. Rev. B 37, 5500 (1988)

    Article  ADS  Google Scholar 

  33. L. de Arcangelis, H.J. Herrmann: Phys. Rev. B 39, 2678 (1989)

    Article  ADS  Google Scholar 

  34. Y. Termonia, P. Meakin, P. Smith: Macromolecules 18, 2246 (1985)

    Article  ADS  Google Scholar 

  35. P. Meakin, in: Ref. [5.4]

    Google Scholar 

  36. E.L. Hinrichsen, A. Hansen, S. Roux: Europhys. Lett. 8,1 (1989)

    Article  ADS  Google Scholar 

  37. H.J. Herrmann, A. Hansen, S. Roux: Phys. Rev. B 39, 637 (1989)

    Article  ADS  Google Scholar 

  38. H.J. Herrmann, J. Kertész, L. de Arcangelis: Europhys. Lett. 10, 147 (1989)

    Article  ADS  Google Scholar 

  39. T.A. Witten, L.M. Sander: Phys. Rev. Lett. 47, 1400 (1981)

    Article  ADS  Google Scholar 

  40. Y.S. Li, P.M. Duxbury: Phys. Rev. B 38, 9257 (1988)

    Article  ADS  Google Scholar 

  41. F. Family, Y.C. Zhang, T. Vicsek: J. Phys. A 19, L733 (1986)

    Article  ADS  Google Scholar 

  42. P.D. Beale, P.M. Duxbury: Phys. Rev. B 37, 2785 (1988)

    Article  ADS  Google Scholar 

  43. L. de Arcangelis, A. Hansen, H.J. Herrmann, S. Roux: Phys. Rev. B 40, 877 (1989)

    Article  ADS  Google Scholar 

  44. A. Hansen, S. Roux, H.J. Herrmann: J. Phys. France 50, 733 (1989)

    Article  Google Scholar 

  45. C. Tang: Phys. Rev. A 31, 1977 (1985);

    Article  ADS  Google Scholar 

  46. J. Szép, J. Cserti, J. Kertész: J. Phys. A 18, L413 (1985);

    Article  ADS  Google Scholar 

  47. J. Nittmann, H.E. Stanley: Nature 321, 661 (1986);

    Google Scholar 

  48. J. Kertész, T. Vicsek: J. Phys. A 19, L257 (1986)

    Article  ADS  Google Scholar 

  49. J. Fernandez, F. Guinea, E. Louis: J. Phys. A 21, L301 (1988)

    Article  ADS  Google Scholar 

  50. B.B. Mandelbrot, T. Vicsek: J. Phys. A 22, L377 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  51. F. Family, D.E. Platt, T. Vicsek: J. Phys. A 20, L1177 (1987)

    Article  ADS  Google Scholar 

  52. J.P. Eckmann, P. Meakin, I. Procaccia, R. Zeitak: Phys. Rev. A 39, 3185 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  53. M.J. Blackburn, W.H. Smyrl, J.A. Feeney, in: Stress Corrosion in High Strength Steels and in Titanium and Aluminium Alloys, ed. by B.F. Brown (Naval Research Lab., Washington 1972), p. 344

    Google Scholar 

  54. S. Roux: J. Stat. Phys. 48, 201 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  55. E.J. Gumbel: Statistics of Extremes (Columbia University, New York 1958)

    MATH  Google Scholar 

  56. J. Galambos: The Asymptotic Theory of Extreme Order Statistics (Wiley, New York 1978)

    MATH  Google Scholar 

  57. P.M. Duxbury, Y.S. Li, in: Proc. of the SIAM Conf. on Random Media and Composites, ed. by R.V. Cohn and G.W. Milton (SIAM, Philadelphia 1989)

    Google Scholar 

  58. G. Paladin, A. Vulpiani: Phys. Rep. 156, 147 (1987);

    Article  MathSciNet  ADS  Google Scholar 

  59. L. de Arcangelis, S. Redner, A. Coniglio: Phys. Rev. B 31, 4725 (1985)

    Article  ADS  Google Scholar 

  60. T.C. Halsey, P. Meakin, I. Procaccia: Phys. Rev. Lett. 56, 854 (1986)

    Article  ADS  Google Scholar 

  61. B.B. Mandelbrot, D.E Passoja, A.J. Paulley: Nature 308, 721 (1984);

    Article  ADS  Google Scholar 

  62. C.S. Pande, L.E. Richards, N. Louat, B.D. Dempsey, A.J. Schwoble: Acta Metall. 35, 1633 (1987)

    Article  Google Scholar 

  63. S.R. Brown, C.H. Scholz: J. Geophys. Res. 90, 12575 (1985)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrmann, H.J. (1991). Fractures. In: Bunde, A., Havlin, S. (eds) Fractals and Disordered Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51435-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51435-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51437-1

  • Online ISBN: 978-3-642-51435-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics