Skip to main content
Log in

Feedrate optimisation/scheduling on sculptured surface machining: a comprehensive review, applications and future directions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Free-form or sculptured surface milling is one of the continually used manufacturing processes for die/mould, aerospace (especially turbine blades), precision machine design, bio-medical devices and automotive industries. Developments of machining technologies for quality enhancement of machining results have become a very important fact in current real industry. Therefore, reducing milling time, tool wear, cutter deflection and improving surface texture quality and machining operations through adaptation and optimisation of tool feedrates based on changing surface geometry in sculptured surface machining is a great step in this direction. Various feedrate optimisation strategies have different feedrate rescheduling control parameters such as chip thickness, material removal rate (MRR), min(mrr,chip,force), max(expo.Acc/dec) and resultant forces. Some commercial CAM softwares come with MRR-based feedrate optimisation algorithms which have a very short calculation time. However, commercial feedrate scheduling systems have some limitations in generating the scheduled feedrates because they use the MRR or the cutting force model which is dependent on milling conditions. However, for the processes in which machining precision/accuracy is very important, it is inevitable that mechanistic force-based feedrate optimisation approaches, for which the calculation time is improved, will be integrated into commercial CAM software packages. Here, developing only the mechanistic cutting force-based algorithm is not enough. In this paper, improvement and optimisation of machining feedrate value, which is one of the cutting parameters which has a tremendous effect on the precise machining of free-form surfaces, was discussed by using the virtual machining framework. For this purpose, the boundary representation solid modelling technique-based free-form milling simulation and feedrate optimisation system integrated with commercial CAD/CAM software is developed for three-axis ball-end milling. This review study includes the information regarding the following topics: The algorithms developed for the feedrate value optimisation, MRR calculation approaches, cutting force computation methods, details of algorithms, the effects on the surface accuracy, the effects on the machining time, the capabilities of the present commercial CAM software packages, the encountered difficulties and overcoming those difficulties, recent developments and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green PA, Phillpot ML (1994) Error modeling of reverse engineered free form surfaces. Trans NAMRI/SME 22:259–266

    Google Scholar 

  2. Bailey T, Elbestawi MA, El-Wardany TI, Fitzpatrick P (2002) Generic simulation approach for multi-axis machining, part 2: model calibration and feed rate scheduling. ASME Trans J Manuf Sci Eng 124:634–642

    Article  Google Scholar 

  3. Yazar Z, Koch K-F, Merrick T, Altan T (1994) Feed rate optimization based on cutting force calculations in 3-axis milling of dies and molds with sculptured surfaces. Int J Mach Tool Manuf 34(3):365–377

    Article  Google Scholar 

  4. Karunakaran KP (2004) Industry watch—modern machine tools, pp 52–58

  5. Li Q, Budong Y, Shuting L (2008) Comparing and combining off-line feedrate rescheduling strategies in free-form surface machining with feedrate acceleration and deceleration. Robot Comput-Integr Manuf 24:796–803

    Article  MATH  Google Scholar 

  6. Wang WP (1988) Solid modeling for optimizing metal removal of three-dimensional NC end milling. J Manufact Sys 7(1):57–65

    Article  Google Scholar 

  7. Jang DJ, Kim KS, Jung JM (2000) Voxel-based virtual multi-axis machining. Int J Adv Manufact Technol 16(10):709–713

    Article  Google Scholar 

  8. Elkeran A, El-Baz MA (2003) NURBS federate adaptation for 3-axis CNC machining. http://www.maintenanceresources.com

  9. Fussell BK, Jerard RB, Hemmett JG (2001) Robust feedrate selection for 3-axis machining using discrete models. ASME J Manuf Sci Eng 123(2):214–224

    Article  Google Scholar 

  10. Hemmett JG, Fussell B, Jerard RB (2000) A robust and efficient approach to feedrate selection for 3-axis machining. ASME International Mechanical Engineering Congress and Exposition—Walt Disney World Dolphin, Orlando

    Google Scholar 

  11. Yun WS, Ko JH, Cho DW (2003) Development of a virtual machine tool—part 1: mechanistic cutting force model, machined surface error model, and feed rate scheduling model. Int J Korean Soc Precision Eng 4:71–76

    Google Scholar 

  12. Karunakaran KP, Vivekananda Shanmuganathan P, Gupa N, Issac M (2000) Swept volume of a generic cutter. P I Mech Eng B 214(10):915–939

    Article  Google Scholar 

  13. El-Mounayri HA (1997) Generic solid modeling based machining process simulation. Ph.D. thesis, McMaster Univ., Canada

  14. Jerard RB, Drysdale RL, Hauck K, Schaudt B, Magewick Ford J (1989) Methods for detecting errors in numerically controlled machining of sculptured surfaces. IEEE Comput Graph Appl 9(1):26–39

    Article  Google Scholar 

  15. Anderson AO (1978) Detecting and elimination collisions in NC machining. Comput-Aided Des 10(4):231–237

    Article  Google Scholar 

  16. Wang WP, Wang KK (1986) Real time verification of multiaxis NC programs with raster graphics. Proceedings of IEEE, international conference on robotics and automation, San Francisco, pp 166–171

  17. Van Hook T (1986) Real time shaded NC milling display. Comput Graph (Proc SIGGRAPH) 20(4):15–20

    Article  Google Scholar 

  18. Atherton PR, Earl C, Fred C (1987) A graphical simulation system for dynamic five-axis NC verification. Proc Autofact SME, Dearborn, MI, vol 2(1), pp 2–12

  19. Jerard RB, Angleton JM, Drysdale RL, Su P (1990) The use of surface points sets for generation, simulation, verification and automatic correction of NC machining programs. SME proceedings of NSF design and manufacturing systems conference, Tempe, AZ, pp 143–148.

  20. Chappel Ian T (1983) The use of vectors to simulate material removed by numerical controlled milling. Comput-Aided Des 15(3):156–158

    Article  Google Scholar 

  21. Oliver JH, Goodman ED (1990) Direct dimensional NC verification. Comput-Aided Des 22(1):3–10

    Article  Google Scholar 

  22. Drysdale RL, Jerard RB, Schaudt B, Hauck K (1989) Discrete simulation of NC machining. Algorithmica 4(1):33–60

    Article  MATH  MathSciNet  Google Scholar 

  23. Jerard RB, Hussaini SZ, Drysdale RL, Schaudt B (1989) Approximate methods for simulation and verification of numerically controlled machining programs. Vis Comput 5:329–348

    Article  MATH  Google Scholar 

  24. Sungertekin VA, Voelcker H (1986) Graphical simulation and automatic verification of NC machining programmes. Int. conference on robotics and automation, pp 156–165

  25. Spence A, Altinas Y (1991) End milling force algorithms for CAD systems. Ann CIRP 40:31–34

    Article  Google Scholar 

  26. Spence AD, Altintas Y (1994) A solid modeler based milling process simulation and planning system. Trans ASME J Eng Ind 116:61–69

    Article  Google Scholar 

  27. Roth D, Ismail F, Bedi S (2003) Mechanistic modeling of the milling process using an adaptive depth buffer. Comput-Aided Des 35:1287–1303

    Article  Google Scholar 

  28. Feng HY, Menq LM, Chai H, Hang ZL (1995) The prediction of dimensional error for sculptured surface production using the ball-end milling process. Int J Mach Tools Manuf 35(8):1149–1169

    Article  Google Scholar 

  29. Mounayri HEI, Spence AD, Elbestawi MA (1998) Milling process simulation—a generic solid modeller based paradigm. J Manuf Sci Eng 120:213–221

    Article  Google Scholar 

  30. Spence AD, Li Z (2001) Parallel processing for 2-1/2D machining simulation. Proceedings of the sixth ACM symposium on solid modeling and applications. ACM, New York, pp 140–148

    Book  Google Scholar 

  31. Fleisig RV, Spence AD (2005) Techniques for accelerating B-rep based parallel machining simulation. Comput-Aided Des 37:1229–1240

    Article  Google Scholar 

  32. Wastra WH, Bronsvoort WF, Vergeest JSM (1994) Interactive simulation of robot milling for rapid shape prototyping. Comput Graph 18(6):861–871

    Article  Google Scholar 

  33. Mortenson ME (1985) Geometric modeling. Wiley, New York

    Google Scholar 

  34. Ayala D, Brunet P, Juan R, Navazo I (1985) Object representation by means of nonminimal division quadtrees and octrees. ACM Trans Graph 4(1):41–59

    Article  Google Scholar 

  35. Carlbom I, Chakravarty I, Vanderschel D (1985) A hierarchical data structure for representing the spatial decomposition of 3D object. IEEE Comput Graph Appl 5(4):24–31

    Article  Google Scholar 

  36. Brunet P, Navazo I (1990) Solid representation and operation using extended octrees. ACM Trans Graph 9(2):170–197

    Article  MATH  Google Scholar 

  37. Chonglin L, Esterling DM, Fontdecaba J, Mosel E (1996) Dimensional verification of NC machining profiles using extended quadtrees. Comput-Aided Des 28(11):845–852

    Article  Google Scholar 

  38. Kondo M (1994) Decomposition of complex geometry for a manufacturing application. Comput-Aided Des 26(3):244–252

    Article  MATH  Google Scholar 

  39. Roy U, Xu Y (1999) Computation of geometric model of a machined part from its NC machining program. Comput-Aided Des 31:401–411

    Article  MATH  Google Scholar 

  40. Karunakaran KP, Shringi R (2006) Octree-to-BRep conversion for volumetric NC simulation. Int J Adv Manuf Technol 32(1–2):116–131

    Google Scholar 

  41. Karunakaran KP (2000) Swept volume of a generic cutter. I MECH E J Eng Manufacture 214:915–938

    Article  Google Scholar 

  42. Menon JP, Voelcker HB (1992) Toward a comprehensive formulation of NC verification as a mathematical and computational problem. Proceedings of the 1992 winter annual meeting of ASME, vol 59, pp 147–164

  43. Drysdale RL, Jerard RB (1987) Discrete simulation of NC machining. Third annual symposium on computational geometry, Waterloo, Canada, pp 126–35

  44. Jerard RB, Drysdale RL. (1991) Methods for geometric modeling, simulation and spatial verification of NC machining programs. Product modeling for computer-aided design and manufacture, North-Holland, pp 39–52

  45. Karunakaran KP, Shringi R (2008) A solid model-based off-line adaptive controller for feed rate scheduling for milling process. J Mater Process Technol 204(1–3):384–396

    Article  Google Scholar 

  46. Metal Carboloy Systems Department (1980) Milling handbook of high efficiency metal cutting. General Electric Company, Detroit

    Google Scholar 

  47. Fussell BK, Ersoy C, Jerard RB (1992) Computer generated CNC machining feedrates. Proc. of the Japan–USA symposium on flexible automation, San Francisco, CA, pp 377–384

  48. Li ZZ, Zheng M, Zheng L, Wu ZJ, Liu DC (2003) A solid model-based milling process simulation and optimization system integrated with CAD/CAM. J Mater Process Technol 138:513–517

    Article  Google Scholar 

  49. Ip WLR (1998) A fuzzy basis material removal optimization strategy for sculptured surface machining using ball-nosed cutters. Int J Prod Res 36(9):2553–2571

    Article  MATH  MathSciNet  Google Scholar 

  50. Ip RWL, Lau HCW, Chan FTS (2003) An economical sculptured surface machining approach using fuzzy models and ball-nosed cutters. J Mater Process Technol 138(1–3):579–585

    Article  Google Scholar 

  51. Lan TS, Hsu KS (2007) The implementation of optimum MRR on digital PC-based lathe system. Int J Adv Manuf Technol 35(3–4):248–254

    Article  Google Scholar 

  52. Chen J, Huang Y, Chen M (2005) Feedrate optimization and tool profile modification for the high-efficiency ball-end milling process. Int J Mach Tools Manuf 45:1070–1076

    Article  Google Scholar 

  53. Kloypayan J, Lee YS (2002) Adaptive federate scheduling and material engagement analysis for high performance machining. Proceedings of ASME international mechanical engineering congress & exposition, New Orleans, Louisiana, USA

  54. Kim SJ, Jung TS, Yang MY (2004) Feedrate optimization using CL surface. J KSPE 21(4):39–47

    Google Scholar 

  55. Jerard RB, Fussell BK, Ercan MT (2001) On-line optimization of cutting conditions for NC machining. NSF Design, Manufacturing & Industrial Innovation Research Conference, Tampa, Florida

  56. Choi B, Jerard R (1998) Sculptured surface machining—theory and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  57. Nehez K, Csaki T (2002) Cutting force modeling possibilities in open GL based milling simulators. The tenth international conference on machine design and production, Cappadocia, Turkey, pp 127–138

  58. Nehez K (2002) A maras szamıtogepes szimulaciojaes optimalasi kerdesei. Ph.D. thesis, Informatikai Intezet, Alkalmazott Informatıkai Tanszeke

  59. Coromant S (1994) Modern metal cutting: a practical handbook. Sandvik Coromant, Sandviken

    Google Scholar 

  60. Tlusty J, MacNeil P (1975) Dynamics of cutting forces in end milling. Ann CIRP 24:21–25

    Google Scholar 

  61. Baek DK, Ko TJ, Park JW, Kim HS (2005) Chip load control using a NC verification model based on z-map. J KSPE 22(4):68–75

    Google Scholar 

  62. Baek DK, Ko TJ (2008) Feedrate scheduling for free-form surface using an NC verification model. Int J Mach Tools Manuf 48(2):163–172

    Article  Google Scholar 

  63. Smith S, Tlusty J (1991) An overview of modelling and simulation of the milling process. ASME J Eng Ind 113(2):169–175

    Article  Google Scholar 

  64. Yang M, Park H (1991) The prediction of cutting force in ball-end milling. Int J Mach Tools Manufact 31:45–54

    Article  Google Scholar 

  65. Yucesan G, Altintas Y (1993) Mechanics of ball end milling process. In KF Ehmann (ed) Manufacturing science and engineering, ASME winter annual meeting, New Orleans, USA-PED, vol 64, pp 543–551

  66. Feng HY, Menq CH (1994) The prediction of cutting forces in the ball-end milling process. I. Model formulation and model building procedure. Int J Mach Tools Manuf 34:697–710

    Article  Google Scholar 

  67. Feng HY, Menq CH (1994) The prediction of cutting forces in the ball-end milling process. II. Cut geometry analysis and model verification. Int J Mach Tools Manuf 34:711–719

    Article  Google Scholar 

  68. Kline WA, DeVor RE, Shareef IA (1983) The effect of runout on cutting geometry and forces in end milling. Intl J Mach Tools Des Res 23:123–140

    Article  Google Scholar 

  69. Chiang ST, Tsai CM, Lee AC (1995) Analysis of cutting forces in ball-end milling. J Mater Process Technol 47(3–4):231–249

    Article  Google Scholar 

  70. Koch KF, Lilly B, Kropp E, Altan T (1990) Development of a CAE-module for calculating cutting forces in 3-axis milling of sculptured surfaces in die manufacturing. National Science Foundation ERC report ERC/NSM-D-90-43, The Ohio State University

  71. Sim C, Yang MY (1993) The prediction of the cutting force in ball-end milling with a flexible cutter. Int J Mach Tools Manuf 33:267–284

    Article  Google Scholar 

  72. Tai CC, Fhu KH (1994) A predictive force model in ball-end milling including eccentricity effects. Int J Mach Tools Manuf 34:959–979

    Article  Google Scholar 

  73. Tai CC, Fhu KH (1995) Model for cutting forces prediction in ball-end milling. Int J Mach Tools Manuf 35:511–534

    Article  Google Scholar 

  74. Abrari F, Elbastawi MA (1997) Closed form formulation of cutting forces for ball and flat end mills. Int J Mach Tools Manuf 37:17–27

    Article  Google Scholar 

  75. Abrari F, Elbestawi MA, Spence AD (1998) On the dynamics of ball-end milling: modeling of cutting forces and stability analysis. Int J Mach Tools Manuf 38:215–237

    Article  Google Scholar 

  76. Kim GM, Cho PJ, Chu CN (2000) Cutting force prediction of sculptured surface ball-end milling using Z-map. Int J Mach Tools Manuf 40:277–291

    Article  Google Scholar 

  77. Lazoglu I, Liang SY (1996) Milling force analysis for complex workpieces. Proceedings of thirteenth symposium on engineering applications of mechanics, manufacturing science and engineering, the Canadian Society of Manufacturing Engineering Forum, pp 373–381.

  78. Lazoglu I, Liang SY (1995) Dynamic cutting forces in ball-end milling. Proceedings of ASME international conference on recent advances in mechatronics, Istanbul, Turkey, pp 940–945

  79. Lazoglu I, Liang SY (1995) Analysis of force system in ball-end milling. Proceedings of symposium on manufacturing science and engineering, ASME-IMECE, MED 2(1)/MH, vol 3(1), pp 179–187

  80. Lazoglu I, Liang SY (1997) An improved analytical model of force system in ball-end milling. Proceedings of symposium on predictable modeling in metal cutting as means of bridging gap between theory and practice: cutting process modeling, ASME-IMECE, Dallas, pp 135–142

  81. Lazoglu I, Liang SY (1997) Analytical modeling of ball-end milling forces. J Machining Sci Technol 1(2):219–234

    Article  Google Scholar 

  82. Feng HY, Su N (2000) Integrated tool path and feed rate optimization for the finishing machining of 3D plane surfaces. Int J Mach Tools Manufact 40:1557–1572

    Article  Google Scholar 

  83. Jung YH, Kim JS, Hwang SM (2001) Chip load prediction in ball-end milling. J Mater Process Technol 111:250–255

    Article  Google Scholar 

  84. Ikua BW, Tanaka H, Obata F, Sakamoto S (2001) Prediction of cutting forces and machining error in ball end milling of curved surfaces—I: theoretical analysis. Precis Eng 25:266–273

    Article  Google Scholar 

  85. Ikua BW, Tanaka H, Obata F, Sakamoto S, Kishi T, Ishii T (2002) Prediction of cutting forces and machining error in ball end milling of curved surfaces. II. Experimental verification. Precis Eng 26:69–82

    Article  Google Scholar 

  86. Zhu R, Kapoor SG, DeVor RE (2001) Mechanistic modeling of the ball-end milling process for multi-axis machining of free-form surfaces. J Manuf Sci Eng 123:369–379

    Article  Google Scholar 

  87. Lazoglu I (2003) Sculpture surface machining: a generalized model of ball-end milling force system. Int J Mach Tools Manuf 43:453–462

    Article  Google Scholar 

  88. Lazoglu I (2001) Mechanistic modeling of ball end milling force system for machining of sculpture surfaces. CIRP 2nd international conference and exhibition on design and productions of dies and molds, Kusadasi, Turkey, DM 06

  89. Lazoglu I (2001) Generalized mechanistic force system model of ball end milling force system for sculpture surface machining. Proceedings of the Manufacturing Engineering Division, the ASME International Mechanical Engineering Congress, New York

  90. Altintas Y, Lee P (1995) Combined mechanics and dynamics of ball end milling. ASME Winter Annu Meet MED 2(1):657–677

    Google Scholar 

  91. Lee P, Altintas Y (1996) Prediction of ball end milling forces from orthogonal cutting data. Int J Mach Tools Manuf 36:1059–1072

    Article  Google Scholar 

  92. Lamikiz A, Lopez de Lacalle LN, Sanchez JA, Salgado MA (2004) Cutting force estimation in sculptured surface milling. Int J Mach Tools Manuf 44(14):1511–1526

    Article  Google Scholar 

  93. Imani BM, Sadeghi MH, Elbestawi MA (1998) An improved process simulation system for ball-end milling of sculptured surfaces. Int J Mach Tools Manuf 38(9):1089–1107

    Article  Google Scholar 

  94. Naserian RS, Sadeghi MH, Haghighat H (2007) Static rigid force model for 3-axis ball-end milling of sculptured surfaces. Int J Mach Tools Manuf 47:785–792

    Article  Google Scholar 

  95. Fontaine M, Moufki A, Devillez A, Dudzinski D (2007) Modelling of cutting forces in ball-end milling with tool–surface inclination: part I: predictive force model and experimental validation. J Mater Process Technol 189(1–3):73–84

    Article  Google Scholar 

  96. Fontaine M, Devillez A, Moufki A, Dudzinski D (2007) Modelling of cutting forces in ball-end milling with tool–surface inclination: part II. Influence of cutting conditions, run-out, ploughing and inclination angle. J Mater Process Technol 189(1–3):85–96

    Article  Google Scholar 

  97. Fontaine M, Devillez A, Moufki A, Dudzinski D (2006) Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. Int J Mach Tools Manuf 46(3–4):367–380

    Article  Google Scholar 

  98. Ning L, Veldhuis SC (2006) Mechanistic modeling of ball end milling including tool wear. J Manuf Processes 8(1):21–28

    Article  Google Scholar 

  99. Tsai CL, Liao YS (2008) Prediction of cutting forces in ball-end milling by means of geometric analysis. J Mater Process Technol 205:24–33

    Article  Google Scholar 

  100. Ben Said M, Saï K, Bouzid Saï W (2009) An investigation of cutting forces in machining with worn ball-end mill. J Mater Process Technol 209(7):3198–3217

    Article  Google Scholar 

  101. Kim GM, Chu CN (2004) Mean cutting force prediction in ball-end milling using force map method. J Mater Process Technol 146(3):303–310

    Article  Google Scholar 

  102. Kim GM, Cho PJ, Chu CN (2000) Cutting force prediction of sculptured surface ball-end milling using Z-map. Int J Mach Tools Manufacture 40(2):277–291

    Article  Google Scholar 

  103. Guzel BU, Lazoglu I (2004) An enhanced force model for sculptured surface machining. Machining Sci Technology 8(3):441–448

    Google Scholar 

  104. Lamikiz A, López de Lacalle LN, Sánchez JA, Salgado MA (2004) Cutting force estimation in sculptured surface milling. Int J Mach Tools Manufac 44(14):1511–1526

    Article  Google Scholar 

  105. Takata S (1993) Generation of a machining scenario and its applications to intelligent machining operations. Ann CIRP 42:531–534

    Article  Google Scholar 

  106. Takata S, Tsai MD, Inui M, Sata T (1989) A cutting simulation system for machinability evaluation using a work piece model. Ann CIRP 38(1):417–420

    Article  Google Scholar 

  107. Salami R, Sadeghi MH, Motakef B (2007) Feed rate optimization for 3-axis ball-end milling of sculptured surfaces. Int J Mach Tool Manuf 47:760–767

    Article  Google Scholar 

  108. Yun WS, Ko JH, Lee HU, Cho DW, Kornel FE (2002) Development of a virtual machining system, part 3: cutting process simulation in transient cuts. Int J Mach Tools Manuf 42(15):1617–1626

    Article  Google Scholar 

  109. Ko JH, Yun WS, Cho DW (2003) Off-line feed rate scheduling using virtual CNC based on an evaluation of cutting performance. Comput-Aided Des 35(4):383–393

    Article  Google Scholar 

  110. Lim EM, Menq CH (1997) Integrated planning for precision machining of complex surfaces. Part 1: cutting-path and feedrate optimization. Int J Mach Tool Manufact 37(1):61–75

    Article  Google Scholar 

  111. Guzel BU, Lazoglu I (2004) Increasing productivity in sculptured surface machining via off-line piecewise variable feedrate scheduling based on the force system model. Int J Mach Tools Manuf 44(1):21–28

    Article  Google Scholar 

  112. Yazar Z, Merrick T, Altan T (1992) Feedrate optimization based on cutting force calculations in 3-axis milling of sculptured surfaces. Ohio State University, Columbus

    Google Scholar 

  113. Erdim H, Lazoglu I, Ozturk B (2006) Feedrate scheduling strategies for free-form surfaces. Int J Mach Tools Manuf 46:747–757

    Article  Google Scholar 

  114. Kaymakci M, Lazoglu I, Murtezaoglu Y (2006) Machining of complex sculptured surfaces with feedrate scheduling. Int J Manuf Res 1(2):157–175

    Article  Google Scholar 

  115. Erdim H, Lazoglu I, Kaymakci M (2007) Free-form surface machining and comparing feedrate scheduling strategies. Machining Sci Technology 11(1):117–133

    Article  Google Scholar 

  116. Erdim H, Lazoglu I, Kaymakci M (2006) Free-form surface machining and comparing feedrate scheduling strategies. The CIRP international conference on high performance cutting, Vancouver, BC, Canada

  117. Lim M, Hsiang MC (1997) Integrated planning for precision machining of complex surface, part I: cutting path and federate optimization. Int J Mach Tools Manuf 37:61–75

    Article  Google Scholar 

  118. Baek DK, Ko TJ, Kim HS (2006) Chip volume prediction using a numerical control verification model. Int J Mach Tools Manufacture 46(12–13):1326–1335

    Article  Google Scholar 

  119. Li ZZ, Zhang ZH, Zheng L (2004) Feedrate optimization for variant milling process based on cutting force prediction. Int J Adv Manuf Technol 24(7–8):541–552

    Article  Google Scholar 

  120. Ko JH, Cho DW (2004) Feed rate scheduling model considering transverse rupture strength of a tool for 3D ball-end milling. Int J Mach Tools Manuf 44(10):1047–1059

    Article  Google Scholar 

  121. Kim KK, Kang MC, Kim JS, Jung YH, Kim NK (2002) A study on the precision machinability of ball end milling by cutting speed optimization. J Mater Process Technol 130–131:357–362

    Article  Google Scholar 

  122. Chu CN, Kim SY, Lee JM (1997) Feed-rate optimization of ball end milling considering local shape features. Ann CIRP 46(1):433–436

    Article  Google Scholar 

  123. Fussell BK, Jerard RB, Richards N, Yalcin C (2002) NC machining feedrate optimization using on-line model tuning and adaptive control. Proceedings of the 2002 NSF design, service and manufacturing grantees and research conference, Puerto Rico

  124. Jerard RB, Fussell BK, Xu M, Yalcin C (2006) Process simulation and feedrate selection for three-axis sculptured surface machining. Int J Manuf Res 1(2):136–156

    Article  Google Scholar 

  125. Erdim H (2005) Improving productivity in free-form machining. MSc thesis, Koç University

  126. Zhang L, Feng J, Wang Y, Chen M (2009) Feedrate scheduling strategy for free-form surface machining through an integrated geometric and mechanistic model. Int J Adv Manuf Technol 40(11–12):1191–1201

    Article  Google Scholar 

  127. Lee HU, Cho DW (2003) An intelligent feedrate scheduling based on virtual machining. Int J Adv Manuf Technol 22:873–882

    Article  Google Scholar 

  128. Tounsi N, Elbestawi MA (2003) Optimized feed scheduling in three axes machining, part I: fundamentals of the optimized feed scheduling strategy. Int J Mach Tools Manuf 43(3):253–267

    Article  Google Scholar 

  129. Tounsi N, Elbestawi MA (2003) Optimized feed scheduling in three axes machining. Part II: experimental validation. Int J Mach Tools Manuf 43(3):269–282

    Article  Google Scholar 

  130. Wan D, Wang S, Zhu CC, Meng F (2009) Feedrate scheduling and jerk control algorithm for high-speed CNC machining. Int J Manuf Technol Manage 17(3):216–231

    MATH  Google Scholar 

  131. Yuwen S, Zhenyuan J, Fei R, Dongming G (2008) Adaptive feedrate scheduling for NC machining along curvilinear paths with improved kinematic and geometric properties. Int J Adv Manuf Technol 36:60–68

    Article  Google Scholar 

  132. FANUC Corporation (2004) FANUC Series 30i/300i/300is-MODEL A, connection manual. FANUC Corporation, Detroit

    Google Scholar 

  133. Siemens Corporation (2003) SINUMERIK 840D/840Di/810D/FM-NC programming guide advanced (PGA), 1000th edn. Siemens Corporation, New York

    Google Scholar 

  134. Liu X, Ahmad F, Yamaaki K, Mori M (2005) Adaptive interpolation scheme for NURBS curves with the integration of machining dynamics. Int J Mach Tools Manuf 45:433–444

    Article  Google Scholar 

  135. Nam SH, Yang MY (2004) A study on a generalized parametric interpolator with real-time jerk-limited acceleration. Comput-Aided Des 36(1):27–36

    Article  Google Scholar 

  136. Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation. Int J Mach Tools Manuf 41(9):1323–1345

    Article  Google Scholar 

  137. Daewoo Heavy Industry (2010) The outline of the machining center and NC programming manual. Daewoo Heavy Industry, Okpo

    Google Scholar 

  138. Yong T, Narayanaswami R (2003) A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining. Comput-Aided Des 35(13):1249–1259

    Article  Google Scholar 

  139. Sun Y, Wang J, Guo D (2006) Guide curve based interpolation scheme of parametric curves for precision CNC machining. Int J Mach Tools Manuf 46:235–242

    Article  Google Scholar 

  140. Lin MT, Tsai MS, Yau HT (2007) Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm. Int J Mach Tools Manuf 47:2246–2262

    Article  Google Scholar 

  141. Arnome M (1998) High performance machining. Hanser Gardner, Cincinnati

    Google Scholar 

  142. Souza FA, Shutzer K (2001) Interpolating free form tool pathfor high speed cutting technology. The 7th international scientific conference on production engineering-CIM 2001. Zagreb, Croatia, June 2001, 146–154

  143. Schützer K, De Souza AF (2004) Interpolation methods analysis in high speed cutting of free form surfaces. Análise dos Métodos de Interpolação na Usinagem com Altíssima Velocidade de Corte para Superfícies Complexas. Revista De Ciência & Tecnologia 11(21):29–36

    Google Scholar 

  144. Lo CC (2000) CNC machine tool surface interpolator for ball end milling of free form surfaces. I J Mach T Man 40(3):307–326

    Article  Google Scholar 

  145. Monreal M, Rodrigues CA (2003) Influence of tool path strategy on the cycle time of high-speed milling. Comp Aid Des 35:395–401

    Article  Google Scholar 

  146. Yau H, Kue M (2001) NURBS machining and federate adjustment for high-speed cutting complex sculptured surfaces. Int J Prod Res 39(1):21–41

    Article  MATH  Google Scholar 

  147. Yeh S, Hsu P (2002) Adaptive-feedrate interpolation for parametric curves with a confined chord error. Comput-Aided Des 34:229–237

    Article  Google Scholar 

  148. Bedi S, Ali I, Quan N (1993) Advanced interpolation techniques for CNC machines. Trans ASME J Eng Ind 115:329–336

    Google Scholar 

  149. Wang FC, Yang DCH (1993) Nearly arc-length parameterized quintic-spline interpolation for precision machining. Comput-Aided Des 25(5):281–288

    Article  MATH  Google Scholar 

  150. Wang FC, Wright PK (1998) Open architecture controllers for machine tools, part 2: a real time quintic spline interpolator. ASME Trans J Manuf Sci Eng 120:425–432

    Article  Google Scholar 

  151. Shpitalni M, Koren Y, Lo CC (1994) Real-time curve interpolators. Comput-Aided Des 26:832–838

    Article  MATH  Google Scholar 

  152. Yang DCH, Kong T (1994) Parametric interpolator versus linear interpolator for precision CNC machining. Comput-Aided Des 26(3):225–233

    Article  MATH  MathSciNet  Google Scholar 

  153. Yeh SS, Hsu PL (1999) The speed-controlled interpolator for machining parametric curves. Comput-Aided Des 31(5):349–357

    Article  MATH  Google Scholar 

  154. Heng M, Erkorkmaz K (2010) Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability. Int J Mach Tools Manuf 50(3):281–293

    Article  Google Scholar 

  155. Farouki RT, Tsai YF (2001) Exact Taylor series coefficients for variable-feedrate CNC curve interpolators. Comput-Aided Des 33:155–165

    Article  Google Scholar 

  156. Zhiming X, Jincheng C, Zhengjin F (2002) Performance evaluation of a realtime interpolation algorithm for NURBS curves. Int J Adv Manuf Technol 20:270–276

    Article  Google Scholar 

  157. Tikhon M, Ko TJ, Lee SH, Kim HS (2004) NURBS interpolator for constant material removal rate in open NC machine tools. Int J Mach Tools Manuf 44:237–245

    Article  Google Scholar 

  158. Li JG, Zhao H, Yao YX, Liu CQ (2007) Off-line optimization on NC machining based on virtual machining. Int J Adv Manuf Technol 36(9–10):908–917

    Google Scholar 

  159. Zhang C, Zhou LS, Yu ZY, An LL, Zhou RY (2005) Multiobjective and varying parameter optimization of machining parameters based on NC simulation data. J Comput Aided Des Comput Graph 17(5):1039–1044

    Google Scholar 

  160. Erdim H, Lazoglu I (2005) Feedrate scheduling strategies for free-form surfaces. Proceedings of the Japan Society of Mechanical Engineers—International Conference on Leading Edge Manufacturing in 21st Century (LEM21) Nagoya, Japan, pp 1121–1126

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurt, M., Bagci, E. Feedrate optimisation/scheduling on sculptured surface machining: a comprehensive review, applications and future directions. Int J Adv Manuf Technol 55, 1037–1067 (2011). https://doi.org/10.1007/s00170-010-3131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-3131-3

Keywords

Navigation