Skip to main content
Log in

Laser shock processing: modeling of evaporation and pressure field developed in the laser-produced cavity

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser shock processing during high-intensity beam ablation of the metallic surface is examined. The phase change due to evaporation and melting is modeled using an energy method. The vapor front expansion and pressure build-up in the laser-produced cavity are obtained numerically using a control volume approach. Elasto-plastic response of the substrate material due to mechanical loading of pressure field developed in the cavity is modeled and predicted using a finite element method. It is found that a high-pressure region is developed in the vicinity of the cavity edge, which, in turn, results in excessive stresses and plastic strain in this region. The depth of the plastic region in the order of a few micrometers below the surface is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yilbas BS, Naqavi IZ, Shuja SZ (2002) Modeling and experimental study into the laser-assisted nitriding of Ti–6Al–4V. ASME. J Manuf Sci Eng 124:863–874 doi:10.1115/1.1511171

    Article  Google Scholar 

  2. Yilbas BS (2003) Laser shortpulse heating of gold: variable properties case. Int J Heat Mass Transfer 46:3511–3520 doi:10.1016/S0017-9310(03)00131-5

    Article  MATH  Google Scholar 

  3. Montross CS, Wei T, Ye L, Clark G, Mai YW (2002) Laser shock processing and its effects on microstructure and properties of metal alloy: a review. Int J Fatigue 24:1021–1036 doi:10.1016/S0142-1123(02)00022-1

    Article  Google Scholar 

  4. Thorslund T, Kahlen FJ, Kar A (2003) Temperatures, pressures and stresses during laser shock processing. Opt Lasers Eng 39:51–71 doi:10.1016/S0143-8166(02)00040-4

    Article  Google Scholar 

  5. Senecha VK, Zhang J, Wang W, Pant HC (2002) Numerical simulation study of laser-driven shock wave propagation in planar aluminium foils. J Phys Condens Matter 14:10917–10920 doi:10.1088/0953-8984/14/44/401

    Article  Google Scholar 

  6. Ding K, Ye L (2003) Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surf Eng 19(5):351–358 doi:10.1179/026708403225007563

    Article  Google Scholar 

  7. Yin S, Zhang Y, Zhou J, Yang J (2005) Movement control of forming by laser shock wave. Proc SPIE-Int Soc Opt Eng 6043 I, MIPPR 2005: SAR and Multispectral Image Processing

  8. Berthe L, Fabbro R, Peyre P, Bartnicki E (1997) Laser shock processing of materials: Experimental study of breakdown plasma effects at the surface of confining water. Proc SPIE-The Int Soc Opt Eng 3097:570–575

    Google Scholar 

  9. Chen JP, Ni XW, Lu J, Bian BM, Wang YW (2000) Laser-induced plasma shock wave and cavity on metal surface underwater. Microw Opt Technol Lett 25(5):307–311 doi:10.1002/(SICI)1098-2760(20000605)25:5<307::AID-MOP6>3.0.CO;2-1

    Article  Google Scholar 

  10. Faraggi E, Wang S, Gerstman B (2005) Stress confinement, shock wave formation and laser induced damage. Progress in Biomedical Optics and Imaging-Proceedings of SPIE, Vol. 5695, Optical Interactions with Tissue and Cells XVI, 2005, pp. 209–215.

  11. Schmidt-Uhlig T, Karlitschek P, Yoda M, Sano Y, Marowsky G (2000) Laser shock processing with 20 MW laser pulses delivered by optical fibres. EPJ Appl Phys 9(3):235–238 doi:10.1051/epjap:2000109

    Article  Google Scholar 

  12. Zhang Y, Cai L, Yang J, Ren N (1997) Measurements of laser-induced shock pressures using PVDF transducer. Chin J Lasers B B6(1):81–85 English Edition

    Google Scholar 

  13. Yilbas BS, Gondal MA, Arif AMF, Shuja SZ (2004) Laser shock processing of Ti–6Al–4V alloy. Proc I MECH E Part B, J Eng Manuf 218(5):473–482

    Google Scholar 

  14. Yilbas BS, Naqavi IZ (2003) Laser heating including phase change process and thermal stress generation in relation to drilling. Proc Instn Mech Engrs Part B: J Eng Manuf 217:977–991

    Article  Google Scholar 

  15. Yilbas BS, Naqavi I (2006) Laser heating and thermal stresses time exponentially heating pulse case. Trans Can Soc Mech Eng 30:113–142

    Google Scholar 

  16. Mansoor SB (2006) Laser evaporative heating in relation to machining, M.Sc. Thesis, Mech. Eng. Dept., KFUPM

  17. Naqavi IZ (2001) Conduction and non-conduction limited laser heating process—mathematical simulation, M.Sc. Thesis, Mech. Eng. Dept., KFUPM

  18. Patankar SV (1980) Numerical heat transfer. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Yilbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilbas, B.S., Mansoor, S.B. & Arif, A.F.M. Laser shock processing: modeling of evaporation and pressure field developed in the laser-produced cavity. Int J Adv Manuf Technol 42, 250–262 (2009). https://doi.org/10.1007/s00170-008-1601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1601-7

Keywords

Navigation