Skip to main content

Advertisement

Log in

A novel particle swarm optimization approach for product design and manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a novel optimization approach that is a new hybrid optimization approach based on the particle swarm optimization algorithm and receptor editing property of immune system. The aim of the present research is to develop a new optimization approach and then to apply it in the solution of optimization problems in both the design and manufacturing areas. A single-objective test problem, tension spring problem, pressure vessel design optimization problem taken from the literature and two case studies for multi-pass turning operations are solved by the proposed new hybrid approach to evaluate performance of the approach. The results obtained by the proposed approach for the case studies are compared with a hybrid genetic algorithm, scatter search algorithm, genetic algorithm, and integration of simulated annealing and Hooke-Jeeves pattern search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilbert WW (1950) Economics of machining theory and practice. American Society Metals, Cleveland, OH

    Google Scholar 

  2. Okushima K, Hitomi K (1964) A study of economic machining: an analysis of maximum profit cutting speed. Int J Prod Res 3:73–78

    Article  Google Scholar 

  3. Ermer DS (1971) Optimization of the constrained machining economics problem by geometric programming. Trans ASME J Eng Ind 93:1067–1072

    Google Scholar 

  4. Boothroyd G, Rusek P (1976) Maximum rate of profit criteria in machining. Trans ASME J Eng Ind 98:217–220

    Google Scholar 

  5. Chen MC, Tsai DM (1996) A simulated annealing approach for optimization of multi-pass turning operations. Int J Prod Res 34:2803–2825

    Article  MATH  Google Scholar 

  6. Iwata K, Murotsu Y, Iwatsubo T, Oba F (1977) Optimization of cutting conditions for multi-pass operations considering probabilistic nature in machining conditions. J Eng Ind Trans ASME 99:211–217

    Google Scholar 

  7. Lambert BK, Walvekar AG (1978) Optimization of multi-pass machining operations. Int J Prod Res 16:259–265

    Article  Google Scholar 

  8. Shin YC, Joo YS (1992) Optimization of machining conditions with practical constraints. Int J Prod Res 30:2907–2919

    Article  Google Scholar 

  9. Ermer DS, Kromodihardo S (1981) Optimization of multipass turning with constraints. J Eng Ind Trans ASME 103:462–468

    Article  Google Scholar 

  10. Gopalkrishan B, Khayyal FA (1991) Machining parameter selection for turning with constraints: an analytical approach based on geometric programming. Int J Prod Res 29:1897–1908

    Article  Google Scholar 

  11. Gupta R, Batra JL, Lal GK (1995) Determination of optimal subdivision of depth of cut in multi-pass turning with constraints. Int J Prod Res 33:2555–2565

    Article  MATH  Google Scholar 

  12. Hati SK, Rao SS (1976) Determination of optimum machining conditions deterministic probabilistic approaches. Trans ASME J Eng Ind 98:354–359

    Google Scholar 

  13. Tan FP, Creese RC (1995) A generalized multi-pass machining model for machining parameter selection in turning. Int J Prod Res 33:1467–1487

    Article  MATH  Google Scholar 

  14. Wang ZG, Rahman M, Wong YS, Sun J (2005) Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. Int J Mach Tools Manuf 45:1726–1734

    Article  Google Scholar 

  15. Holland HJ (1975) Adaptation in natural and artificial systems an introductory analysis with application to biology control and artificial intelligence. The University of Michigan Press, Ann Arbor, USA

    Google Scholar 

  16. Lyu N, Saitou K (2005) Topology optimization of multi-component structures via decomposition-based assembly synthesis. Transactions of ASME. J Mec Design 127:170–183

    Article  Google Scholar 

  17. Singh D, Rao PV (2007) Optimization of tool geometry and cutting parameters for hard turning. Mater Manuf Process 22:15–21

    Article  Google Scholar 

  18. Yildiz AR, Ozturk F (2006) Hybrid enhanced genetic algorithm to select optimal machining parameters in turning operation. Proc Inst Mech Eng, B J Eng Manuf 220:2041–2053

    Article  Google Scholar 

  19. Tandon V, El-Mounayri H, Kishawy H (2002) NC end milling optimization using evolutionary computation. Int J Mach Tools Manuf 42:595–605

    Article  Google Scholar 

  20. Fourie PC, Groenwold AA (2002) The particle swarm optimization algorithm in size shape optimization. Struct Multidiscipl Optim 23:259–267

    Article  Google Scholar 

  21. Yıldız AR, Özturk N, Kaya N, Özturk F (2007) Hybrid multi-objective shape design optimization using Taguchi’s method and genetic algorithm. Struct Multidiscipl Optim 34:277–365

    Article  Google Scholar 

  22. Yildiz AR, Saitou K (2008) Topology synthesis of multi-component structural assemblies in continuum domains. In: Proc. ASME International Design Engineering Technical Conferences IDETC/CIE 2008 New York, USA, August 3–6, 2008

  23. Onwubolu GC, Clerc M (2004) Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization. Int J Prod Res 42:473–491

    Article  MATH  Google Scholar 

  24. Yildiz AR (2008) A novel hybrid immune algorithm for global optimization in design and manufacturing. Robot Compute Integr Manuf DOI 10.1016/j.rcim.2007.08.002 (in press)

  25. Camp CV, Bichon BJ, Stovall SP (2005) Design of steel frames using ant colony optimization. ASCE-J Struct Eng 131:367–525

    Article  Google Scholar 

  26. Karpat Y, Özel T (2006) Swarm-intelligent neural network system (SINNS) based multi-objective optimization of hard-turning. Trans NAMRI/SME 34:1–8

    Google Scholar 

  27. Onwubolu GC, Kumalo T (2001) Optimization of multi-pass turning operation with genetic algorithm. Int J Prod Res 39:3727–3745

    Article  MATH  Google Scholar 

  28. Vijayakumar K, Prabhaharan G, Asokan P, Saravanan R (2003) Optimization of multi-pass turning operation using ant colony system. Int J Mach Tools Manuf 43:1633–1639

    Article  Google Scholar 

  29. Chen MC, Chen KY (2003) Optimization of multipass turning operations with genetic algorithms: a note. Int J Prod Res 41:3385–3388

    Article  Google Scholar 

  30. Chen MC (2004) Optimizing machining economics models of turning operations using the scatter search approach. Int J Prod Res 42:2611–2625

    Article  Google Scholar 

  31. Haq AN, Sivakumar K, Saravanan R, Karthikeyan K (2006) Particle swarm optimization algorithm for optimal machining allocation of clutch assembly. Int J Adv Manuf Technol 27:865–869

    Article  Google Scholar 

  32. El-Mounayri H, Dugla Z, Deng H (2003) Prediction of surface roughness in end milling using swarm intelligence. In: Proc IEEE Swarm Intelligence Symposium 2003

  33. Venter G, Sobieszczanski-Sobieski J (2004) Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Struct Multidiscipl Optim 26:121–131

    Article  Google Scholar 

  34. Asokan P, Baskar N, Babu K, Prabhaharan G, Saravanan R (2005) Optimization of surface grinding operations using particle swarm optimization technique. J Manuf Sci Eng - Trans ASME 127:885–892

    Article  Google Scholar 

  35. Bochenek B, Forys P (2006) Structural optimization for post-buckling behavior using particle swarms. Struct Multidiscipl Optim 32:521–531

    Article  Google Scholar 

  36. Andres C, Lozano S (2006) A particle swarm optimization algorithm for part-machine grouping. Robot Compute Integr Manuf 22:468–474

    Article  Google Scholar 

  37. Adly AA, Abd-El-Hafiz SK (2006) Using the particle swarm evolutionary approach in shape optimization field analysis of devices involving nonlinear magnetic media. IEEE Trans Magn 42:3150–3152

    Article  Google Scholar 

  38. Goudos SK, Sahalos JN (2006) Microwave absorber optimal design using multi-objective particle swarm optimization. Microw Optic Technol Lett 48:1553–1558

    Article  Google Scholar 

  39. Natarajan U, Saravanan R, Periasamy VM (2006) Application of particle swarm optimisation in artificial neural network for the prediction of tool life. Int J Adv Manuf Technol 28:1084–1088

    Article  Google Scholar 

  40. Vahed ARR, Mirghorbani SM (2007) A multi-objective particle swarm for a flow shop scheduling problem. J Comb Optim 13:79–102

    Article  MathSciNet  MATH  Google Scholar 

  41. Fan SSK, Liang YC, Zahara E (2004) Hybrid simplex search particle swarm optimization for the global optimization of multimodal functions. Eng Optim 36:401–418

    Article  Google Scholar 

  42. Xia WJ, Wu ZM (2006) A hybrid particle swarm optimization approach for the job-shop scheduling problem. Int J Adv Manuf Technol 29:360–366

    Article  Google Scholar 

  43. Yoo J, Hajela P (1999) Immune network simulations in multicriterion design. Struct Multidisciplin Optimi 1:8:85–94

    Google Scholar 

  44. Coello CAC, Cortes NC (2004) Hybridizing a genetic algorithm with an artificial immune system for global optimization. Eng Optim 36:607–634

    Article  MathSciNet  Google Scholar 

  45. Kaya N (2006) Optimal design of an automotive diaphragm spring with high fatigue resistance. Int J Veh Des 40:126–143

    Article  Google Scholar 

  46. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proc IEEE Sixth International Symposium on Micro Machine Human Science. Nagoya, Japan, pp 39-43

  47. De Castro LN, Von Zuben FJ (1999) Artificial immune systems. Part 1, Basic theory applications. Tech Rep TR-DCA 01/99

  48. George AJT, Gray D (1999) Receptor editing during affinity maturation. Immunol Today 20:196

    Article  Google Scholar 

  49. De Castro LN, Von Zuben FJ (2000) The clonal selection algorithm with engineering applications. In: Proc Workshop on GECCO 2000 Las Vegas July 8–12 2000

  50. De Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6:239–251

    Article  Google Scholar 

  51. Hamida SB, Schoenauer M (2002) ASCHEA:New results using adaptive segregational constraint handling. In: Proc Congr Evolutionary Computation 1:884–889

    Google Scholar 

  52. Koziel S, Michalewicz Z (1999) Evolutionary algorithms homomorphous mappings and constrained parameter optimization. Evol Comput 71:19–44

    Article  Google Scholar 

  53. Hadj-Alouane AB, Bean JC (1997) A genetic algorithm for the multiple-choice integer program. Oper Res 45:92–101

    Article  MathSciNet  MATH  Google Scholar 

  54. Michalewicz Z, Attia N (1994) Evolutionary optimization of constrained problems. Proc 3rd Annual Conference on Evolutionary Programming World Scientific 1994, pp 98–108

  55. Belegundu AD (1992) A study of mathematical programming methods for structural optimization. Department of Civil and Environmental Engineering University of Iowa, Iowa City, Iowa

    Google Scholar 

  56. Arora JS (1989) Introduction to optimum design. McGraw-Hill, New York

    Google Scholar 

  57. Coello CAC (2004) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127

    Article  Google Scholar 

  58. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Informatics 16:193–203

    Google Scholar 

  59. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. ASME J Mech Des 116:318–320

    Article  Google Scholar 

  60. Sandgren E (1998) Nonlinear integer discrete programming in mechanical design. In: Proc ASME Design Technology Conference, Kissimmee, FL, USA

  61. Deb K (1997) GeneAS: a robust optimal design technique for mechanical component design. In: Proc Evolutionary Algorithms in Engineering Applications. Springer, Berlin Heidelberg New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rıza Yıldız.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yıldız, A.R. A novel particle swarm optimization approach for product design and manufacturing. Int J Adv Manuf Technol 40, 617–628 (2009). https://doi.org/10.1007/s00170-008-1453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1453-1

Keywords

Navigation