Skip to main content
Log in

Blank optimization for sheet metal forming using multi-step finite element simulations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present study aims to determine the optimum blank shape design for deep drawing of arbitrary shaped cups with a uniform trim allowance at the flange, i.e., cups without ears. The earing, or non-uniform flange, is caused by non-uniform material flow and planar anisotropy in the sheet. In this research, a new method for optimum blank shape design using finite element analysis is proposed. The deformation process is first divided into multiple steps. A shape error metric is defined to measure the amount of earing and to compare the deformed shape and target shape set for each stage of the analysis. This error metric is then used to decide whether the blank needs to be modified. The blank geometry change is based on material flow. The cycle is repeated until the converged results are achieved. This iterative design process leads to optimal blank shape. To test the proposed method, three examples of cup drawing are presented. In every case converged results are achieved after a few iterations. The proposed systematic method for optimal blank design is found to be very effective in the deep drawing process and can be further applied to other sheet metal forming applications such as stamping processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung K, Richmond O (1993) Ideal forming I. Homogeneous deformation with minimum plastic work. Int J Mech Sci 34(7):575–591

    Article  Google Scholar 

  2. Chung K, Richmond O (1992) Ideal forming II. Sheet forming with optimum deformation. Int J Mech Sci 34(8):617–633

    Article  MATH  Google Scholar 

  3. Park SH, Yoon JW, Yang DY, Kim YH (1999) Optimum blank design in sheet metal forming by deformation path iteration method. Int J Mech Sci 41:1217–1232

    Article  MATH  Google Scholar 

  4. Chung K, Barlat F, Brem JC (1997) Blank shape design for a planar anisotropy sheet based on ideal forming design theory and FEM analysis. Int J Mech Sci 39:617–633

    Article  Google Scholar 

  5. Sowerby R, Duncan JL, Chu E (1986) The modeling of sheet metal stampings. Int J Mech Sci 28(7):415–430

    Article  Google Scholar 

  6. Blount GN, Fischer BV (1995) Computerized blank shape prediction for sheet metal components having doubly-curved surfaces. Int J Prod Res 33(4):993–1005

    Article  MATH  Google Scholar 

  7. Gerdeen JC, Chen P (1989) Geometric mapping method off computer modeling of sheet metal forming. NUMIFORM’89 Thompson et al (eds), Balkema, Rotterdam, ISBN 9061918979

  8. Parsa MH, Pournia P (2007) Optimization of initial blank shape predicted based on inverse finite element method. Finite Elem Anal Des 43(3):218–233

    Article  Google Scholar 

  9. Tang BT, Zhao Z, Lu XY, Wang ZQ, Zhao XW, Chen SY (2007) Fast thickness prediction and blank design in sheet metal forming based on an enhanced inverse analysis method. Int J Mech Sci 49(9):1018–1028

    Article  Google Scholar 

  10. Toshihiko M, Kawai N, Marumo Y, Senga M (1987) Square shell deep drawability of commercially pure aluminum sheets. Nippon kikai Gakkai Ronbunshu 53(487):771–779

    Google Scholar 

  11. Gloeckl H, Lange K (1983) Computer aided design of blanks for deep drawing irregular shaped components. Manuf Eng Trans 11:243–251

    Google Scholar 

  12. Duncan JL, Sowerby R (1981) Computer aids in sheet metal forming. Ann CIRP 30(2):541–546

    Article  Google Scholar 

  13. Chen X, Sowerby R (1996) Blank development and the prediction of earing in cup drawing. Int J Mech Sci 8(5):509–516

    Article  Google Scholar 

  14. Liu F, Sowerby R (1991) The determination of optimal blank shapes when deep drawing prismatic cups. J Mater Shap Technol 9(3):153–159

    Article  Google Scholar 

  15. Lo SW, Lee JY (1998) Optimum blank shapes for prismatic cup drawing-consideration of friction and material anisotropy. J Manuf Sci Eng 120:306–315

    Article  Google Scholar 

  16. Agrawal A, Reddy NV, Dixit PM (2008) Optimal blank shape prediction considering sheet thickness variation: An upper bound approach. J Mater Proc Tech 196:249–258

    Article  Google Scholar 

  17. Kim N, Kobayashi S (1986) Blank design in rectangular cup drawing by an approximate method. Int J Machine Tool Des Res 26(2):125–135

    Article  Google Scholar 

  18. Chung K, Shah K (1992) Finite element simulation of sheet metal forming for planar anisotropic metals. Int J Plasticity 8:453–476

    Article  Google Scholar 

  19. Barlet O, Batoz JL, Guo YQ, Mercier F, Naceur H, Knopf-Lenoir C (1996) Optimum design of blank contour using the inverse approach and a mathematical programming technique. NUMISHEET’96 178–85

  20. Hu P, Liu YQ, Wang JC (2000) Numerical study of the flange earing of deep drawing sheets with stronger anisotropy. Int J Mech Sci 43:279–296

    Article  Google Scholar 

  21. Gea HC, Ramamurthy R (1998) Blank design optimization on deep drawing of square shells. Trans IIE 30(10):913–921

    Google Scholar 

  22. Ohata T, Nakamura Y, Katayama T, Nakamachi E, Nakano K (1996) Development of optimum process design system by numerical simulation. J Mater Process Technol 60:543–548

    Article  Google Scholar 

  23. Cai Z-Y, Li M-Z, Zhang H-M (2007) A simplified algorithm for planar development of 3D surface and its application in the blank design of sheet metal forming. Finite Elem Anal Des 43(4):301–310

    Article  MathSciNet  Google Scholar 

  24. Sattari H, Sedaghati R, Ganesan R (2007) Analysis and design optimization of deep drawing process: Part II: Optimization. J Mater Process Technol 184(1–3):84–92

    Article  Google Scholar 

  25. Yeh F–H, Wu M–T, Li C–L (2007) Accurate optimization of blank design in stretch flange based on a forward-inverse prediction scheme. Int J Machine Tools and Manufacture 47(12–13):1854–1863

    Article  Google Scholar 

  26. Iseki H, Murota T (1986) On the determination of the optimum blank shape of non-axisymmetric drawn cup by finite element method. Bulletin of JSME 29(249):249–254

    Google Scholar 

  27. Mamalis AG, Manolakosand DE, Baldoukas AK (1996) On the finite-element modelling of the deep drawing of square sections of coated steels. J Mater Process Technol 58:153–159

    Article  Google Scholar 

  28. Mamalis AG, Manolakosand DE, Baldoukas AK (1997) Simulation of sheet metal forming using explicit finite-element techniques: effect of material and forming characteristics. Part 1. Deep drawing of cylindrical cups. J Mater Process Technol 72:48–60

    Article  Google Scholar 

  29. Mamalis AG, Manolakos DE, Baldoukas AK (1997) Simulation of sheet metal forming using explicit finite-element techniques: effect of material and forming characteristics. Part 2. Deep drawing of square cups. J Mater Process Technol 72:110–116

    Article  Google Scholar 

  30. Shim HB, Son KC, Kim KH (1999) Optimum blank shape design by sensitivity analysis. Proceedings of the Numisheet’99, Besancon, France 1:523–528

    Google Scholar 

  31. Shim HB, Son KC (2000) Optimal blank design for the drawings of arbitrary shapes by the sensitivity method. Proc ASME 2000, Manufacturing in Engineering Division, Orlando, FL, MED-11:487–493

  32. Shim HB, Son KC, Kim KH (2000) Optimal blank shape design by sensitivity method. J Mater Process Technol 104:191–199

    Article  Google Scholar 

  33. Son K, Shim H (2003) Optimal blank shape design using the initial velocity of boundary nodes. J Mater Process Technol 134:92–98

    Article  Google Scholar 

  34. Iseki H, Sowerby R (1995) Determination of the optimal blank shape when deep drawing non-axisymmetric cups using a finite element method. JSME Int A 38(4):473–479

    Google Scholar 

  35. Lee CH, Huh H (1997) Blank design and strain prediction of automobile stamping parts by an inverse finite element approach. J Mater Process Technol 63:645–650

    Article  Google Scholar 

  36. Kim SD, Park MH, Kim SJ, Seo DG (1998) Blank design and formability for non-circular deep drawing processes by the finite element method. J Mater Process Technol 75:94–99

    Article  Google Scholar 

  37. Kim DH, Lee JM, Park SH, Yang DY, Kim YH (1997) Blank design system for sheet forming. J Korean Soc Tech Plast 6(5):400–407

    Google Scholar 

  38. Xueshan L, Bingwen L (1986) Modeling of flange deformation of irregular drawn cups using a fluid analogy. Int J Mech Sci 28(8):491–497

    Article  Google Scholar 

  39. Zhaotao Z, Bingwen L (1986) Determination of blank shapes for drawing irregular cups using an electrical analogue method. Int J Mech Sci 28(8):499–503

    Article  Google Scholar 

  40. Toh CH, Kobayashi S (1985) Deformation analysis and blank design in square cup drawing. Int J Mech Sci 25(1):15–32

    Google Scholar 

  41. Guo YQ, Batoz JL, Detraux JM, Duroux P (1990) Finite element procedures for strain estimations of sheet metal forming parts. Int J Num Meth Eng 30:1385–1401

    Article  MATH  Google Scholar 

  42. Pegada V, Chun Y, Santhanam S (2002) An algorithm for determining the optimal blank shape for the deep drawing of aluminum cups. J Mater Process Technol 125–126:743–750

    Article  Google Scholar 

  43. Kishor N, Kumar DR (2002) Optimization of initial blank shape to minimize earing in deep drawing using finite element method. J Mater Process Technol 130–131:20–30

    Article  Google Scholar 

  44. Lan F, Lin J, Chen J (2006) An integrated numerical technique in determining blank shape for netshape sheet metal forming. J Mater Process Technol 177(1–3):72–75

    Article  Google Scholar 

  45. Park CS, Ku TW, Kang BS, Hwang SM (2004) Process design and blank modification in the multistage rectangular deep drawing of an extreme aspect ratio. J Mater Process Technol 153–154:778–784

    Article  Google Scholar 

  46. Gantar G, Peplnjak T, Kuzman K (2002) Optimization of sheet metal forming processes by use of numerical simulations. J Mater Process Technol 130–131:54–59

    Article  Google Scholar 

  47. Fourment L et al (1995) NUMIFORM’ 95:557–562

  48. Zaky AM, Nassr AB, El-Sebaie MG (1998) Optimal blank shape of cylindrical cups in deep drawing of anisotropic sheet metals. J Mater Process Technol 76:203–211

    Article  Google Scholar 

  49. Wilson FW, Harvey PD, Gump Jr CB (1965) Die design handbook. SME, McGraw Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyhwen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Goel, A., Yang, F. et al. Blank optimization for sheet metal forming using multi-step finite element simulations. Int J Adv Manuf Technol 40, 709–720 (2009). https://doi.org/10.1007/s00170-008-1383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1383-y

Keywords

Navigation