Skip to main content
Log in

Terminal knee extension deficit and female sex predict poorer quadriceps strength following ACL reconstruction using all-soft tissue quadriceps tendon autografts

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The all-soft tissue quadriceps tendon (QT) autograft is becoming increasingly popular for ACL reconstruction (ACLR); however, studies reporting strength recovery and early outcomes after QT autograft are limited with patient samples composed of predominantly males. The primary purpose was to characterize early, sex-specific recovery of strength, range of motion (ROM), and knee laxity in a large cohort of patients undergoing primary ACLR with standardized harvest technique of the all-soft tissue QT autograft. The secondary purpose was to examine the influence of demographic factors and clinical measures on 6-month quadriceps strength.

Methods

Patients 14–25 years who underwent primary, unilateral ACLR with all-soft tissue QT autografts were prospectively followed. Knee laxity and ROM were collected at 6 weeks, 3 and 6 months; while, quadriceps normalized torques and limb symmetry indices (LSI) were collected at 3 and 6 months using isokinetic dynamometry at 60°/s. Two-way ANOVAs with repeated measures were conducted to determine recovery over time and between sexes. Stepwise linear multiple regressions were conducted to determine predictors of 6-month quadriceps strength.

Results

Three-hundred and twenty patients were included (18 ± 3 years; 156 males:164 females; BMI = 24 ± 4 kg/m2) with no early graft failures within the study period. For strength, there were significant main effects of time (p < 0.001) and sex (p < 0.001), indicating similar improvement from 3 to 6 months with males demonstrating greater quadriceps LSI (6 months: 72.1 vs 63.3%) and normalized strength (6 months: 2.0 vs 1.6 Nm/kg). A significantly higher proportion of females had knee extension ROM deficits ≥ 5° compared to males at 6 weeks (61 vs 39%; p = 0.002). Female sex and 3-month extension ROM deficits were identified as significant predictors of 6-month quadriceps LSI (R2 = 0.083; p < 0.001). Female sex, BMI, and 6-week extension ROM deficits were identified as significant predictors of 6-month normalized quadriceps strength (R2 = 0.190; p < 0.001).

Conclusions

Females had decreased quadriceps strength and greater extension ROM deficits at 3 and 6 months following ACLR using all-soft tissue QT autografts. Female sex, higher BMI, and loss of extension ROM were independent predictors of poorer quadriceps strength at 6 months. There were no early graft failures, and laxity remained within normal ranges for both males and females. Surgeons and rehabilitation clinicians should be aware of the increased risk of postoperative loss of extension ROM in females and its implications on quadriceps strength recovery.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cameron KL, Peck KY, Thompson BS, Svoboda SJ, Owens BD, Marshall SW (2015) Reference values for the marx activity rating scale in a young athletic population: history of knee ligament injury is associated with higher scores. Sports Health 7:403–408

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cavaignac E, Coulin B, Tscholl P, Nik Mohd Fatmy N, Duthon V, Menetrey J (2017) Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 years. Am J Sports Med 45:1326–1332

    Article  PubMed  Google Scholar 

  3. Cristiani R, Mikkelsen C, Edman G, Forssblad M, Engstrom B, Stalman A (2019) Age, gender, quadriceps strength and hop test performance are the most important factors affecting the achievement of a patient-acceptable symptom state after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05576-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–407

    Article  CAS  PubMed  Google Scholar 

  5. Duchman KR, Lynch TS, Spindler KP (2017) Graft selection in anterior cruciate ligament surgery: who gets what and why? Clin Sports Med 36:25–33

    Article  PubMed  Google Scholar 

  6. Eitzen I, Holm I, Risberg MA (2009) Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med 43:371–376

    Article  CAS  PubMed  Google Scholar 

  7. Fischer F, Fink C, Herbst E, Hoser C, Hepperger C, Blank C et al (2018) Higher hamstring-to-quadriceps isokinetic strength ratio during the first post-operative months in patients with quadriceps tendon compared to hamstring tendon graft following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26:418–425

    Article  PubMed  Google Scholar 

  8. Gagliardi AG, Carry PM, Parikh HB, Albright JC (2020) Outcomes of quadriceps tendon with patellar bone block anterior cruciate ligament reconstruction in adolescent patients with a minimum 2-year follow-up. Am J Sports Med 48:93–98

    Article  PubMed  Google Scholar 

  9. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA (2016) Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 50:804–808

    Article  PubMed  Google Scholar 

  10. Hadjicostas PT, Soucacos PN, Berger I, Koleganova N, Paessler HH (2007) Comparative analysis of the morphologic structure of quadriceps and patellar tendon: a descriptive laboratory study. Arthroscopy 23:744–750

    Article  PubMed  Google Scholar 

  11. Han HS, Seong SC, Lee S, Lee MC (2008) Anterior cruciate ligament reconstruction: quadriceps versus patellar autograft. Clin Orthop Relat Res 466:198–204

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heffron WM, Hunnicutt JL, Xerogeanes JW, Woolf SK, Slone HS (2019) Systematic review of publications regarding quadriceps tendon autograft use in anterior cruciate ligament reconstruction. Arthrosc Sports Med Rehabil 1:e93–e99

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hettrich CM, Dunn WR, Reinke EK, Spindler KP (2013) The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med 41:1534–1540

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hsu W-H, Fan C-H, Yu P-A, Chen C-L, Kuo L-T, Hsu RW-W (2018) Effect of high body mass index on knee muscle strength and function after anterior cruciate ligament reconstruction using hamstring tendon autografts. BMC Musculoskelet Disord 19:363–363

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hughes JD, Burnham JM, Hirsh A, Musahl V, Fu FH, Irrgang JJ et al (2019) Comparison of short-term biodex results after anatomic anterior cruciate ligament reconstruction among 3 autografts. Orthop J Sports Med 7:2325967119847630

    PubMed  PubMed Central  Google Scholar 

  16. Hunnicutt JL, Gregory CM, McLeod MM, Woolf SK, Chapin RW, Slone HS (2019) Quadriceps recovery after anterior cruciate ligament reconstruction with quadriceps tendon versus patellar tendon autografts. Orthop J Sports Med 7:2325967119839786

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ithurburn MP, Altenburger AR, Thomas S, Hewett TE, Paterno MV, Schmitt LC (2018) Young athletes after ACL reconstruction with quadriceps strength asymmetry at the time of return-to-sport demonstrate decreased knee function 1 year later. Knee Surg Sports Traumatol Arthrosc 26:426–433

    Article  PubMed  Google Scholar 

  18. Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC (2015) Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am J Sports Med 43:2727–2737

    Article  PubMed  Google Scholar 

  19. Iwame T, Matsuura T, Okahisa T, Iwase J, Uemura H, Sairyo K (2019) Factors correlating with recovery of quadriceps strength after double-bundle anterior cruciate ligament reconstruction with hamstring tendon autografts. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-019-02580-7

    Article  PubMed  Google Scholar 

  20. Keays SL, Bullock-Saxton JE, Newcombe P, Keays AC (2003) The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res 21:231–237

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi A, Higuchi H, Terauchi M, Kobayashi F, Kimura M, Takagishi K (2004) Muscle performance after anterior cruciate ligament reconstruction. Int Orthop 28:48–51

    Article  CAS  PubMed  Google Scholar 

  22. Krych AJ, Woodcock JA, Morgan JA, Levy BA, Stuart MJ, Dahm DL (2015) Factors associated with excellent 6-month functional and isokinetic test results following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 23:1053–1059

    Article  PubMed  Google Scholar 

  23. Kuenze C, Hertel J, Saliba S, Diduch DR, Weltman A, Hart JM (2015) Clinical thresholds for quadriceps assessment after anterior cruciate ligament reconstruction. J Sport Rehabil 24:36–46

    Article  PubMed  Google Scholar 

  24. Kuenze C, Pietrosimone B, Lisee C, Rutherford M, Birchmeier T, Lepley A et al (2019) Demographic and surgical factors affect quadriceps strength after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:921–930

    Article  PubMed  Google Scholar 

  25. Lebel B, Hulet C, Galaud B, Burdin G, Locker B, Vielpeau C (2008) Arthroscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone autograft: a minimum 10-year follow-up. Am J Sports Med 36:1275–1282

    Article  PubMed  Google Scholar 

  26. Lee JK, Lee S, Lee MC (2016) Outcomes of anatomic anterior cruciate ligament reconstruction: bone-quadriceps tendon graft versus double-bundle hamstring tendon graft. Am J Sports Med 44:2323–2329

    Article  PubMed  Google Scholar 

  27. Lee S, Seong SC, Jo CH, Han HS, An JH, Lee MC (2007) Anterior cruciate ligament reconstruction with use of autologous quadriceps tendon graft. J Bone Jt Surg Am 89(Suppl 3):116–126

    Google Scholar 

  28. Lund B, Nielsen T, Fauno P, Christiansen SE, Lind M (2014) Is quadriceps tendon a better graft choice than patellar tendon? A prospective randomized study. Arthroscopy 30:593–598

    Article  PubMed  Google Scholar 

  29. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531

    Article  PubMed  Google Scholar 

  30. Marx RG, Stump TJ, Jones EC, Wickiewicz TL, Warren RF (2001) Development and evaluation of an activity rating scale for disorders of the knee. Am J Sports Med 29:213–218

    Article  CAS  PubMed  Google Scholar 

  31. Middleton KK, Hamilton T, Irrgang JJ, Karlsson J, Harner CD, Fu FH (2014) Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sports Traumatol Arthrosc 22:1467–1482

    Article  CAS  PubMed  Google Scholar 

  32. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E (2019) Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts. Am J Sports Med. https://doi.org/10.1177/0363546518825340

    Article  PubMed  Google Scholar 

  33. Noyes FR, Mangine RE, Barber S (1987) Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 15:149–160

    Article  CAS  PubMed  Google Scholar 

  34. Nwachukwu BU, McFeely ED, Nasreddine A, Udall JH, Finlayson C, Shearer DW et al (2011) Arthrofibrosis after anterior cruciate ligament reconstruction in children and adolescents. J Pediatr Orthop 31:811–817

    Article  PubMed  Google Scholar 

  35. Palmieri-Smith RM, Lepley LK (2015) Quadriceps strength asymmetry after anterior cruciate ligament reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med 43:1662–1669

    Article  PubMed  PubMed Central  Google Scholar 

  36. Petersen W, Taheri P, Forkel P, Zantop T (2014) Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg 134:1417–1428

    Article  PubMed  Google Scholar 

  37. Pietrosimone B, Lepley AS, Harkey MS, Luc-Harkey BA, Blackburn JT, Gribble PA et al (2016) Quadriceps strength predicts self-reported function post-ACL reconstruction. Med Sci Sports Exerc 48:1671–1677

    Article  PubMed  Google Scholar 

  38. Pigozzi F, Di Salvo V, Parisi A, Giombini A, Fagnani F, Magini W et al (2004) Isokinetic evaluation of anterior cruciate ligament reconstruction: quadriceps tendon versus patellar tendon. J Sports Med Phys Fit 44:288–293

    CAS  Google Scholar 

  39. Sanders TL, Kremers HM, Bryan AJ, Kremers WK, Stuart MJ, Krych AJ (2017) Procedural intervention for arthrofibrosis after ACL reconstruction: trends over two decades. Knee Surg Sports Traumatol Arthrosc 25:532–537

    Article  PubMed  Google Scholar 

  40. Schmitt LC, Paterno MV, Ford KR, Myer GD, Hewett TE (2015) Strength asymmetry and landing mechanics at return to sport after anterior cruciate ligament reconstruction. Med Sci Sports Exerc 47:1426–1434

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schmitt LC, Paterno MV, Hewett TE (2012) The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42:750–759

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schneider BA, Avivi-Reich M, Mozuraitis M (2015) A cautionary note on the use of the Analysis of Covariance (ANCOVA) in classification designs with and without within-subject factors. Front Psychol 6:474

    PubMed  PubMed Central  Google Scholar 

  43. Shelbourne KD, Klotz C (2006) What I have learned about the ACL: utilizing a progressive rehabilitation scheme to achieve total knee symmetry after anterior cruciate ligament reconstruction. J Orthop Sci 11:318–325

    Article  PubMed  PubMed Central  Google Scholar 

  44. Slone HS, Ashford WB, Xerogeanes JW (2016) Minimally invasive quadriceps tendon harvest and graft preparation for all-inside anterior cruciate ligament reconstruction. Arthrosc Tech 5:e1049–e1056

    Article  PubMed  PubMed Central  Google Scholar 

  45. Slone HS, Romine SE, Premkumar A, Xerogeanes JW (2015) Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy 31:541–554

    Article  PubMed  Google Scholar 

  46. Spindler KP, Huston LJ, Chagin KM, Kattan MW, Reinke EK, Amendola A et al (2018) Ten-year outcomes and risk factors after anterior cruciate ligament reconstruction: a MOON longitudinal prospective cohort study. Am J Sports Med 46:815–825

    Article  PubMed  Google Scholar 

  47. Tan SH, Lau BP, Khin LW, Lingaraj K (2016) The importance of patient sex in the outcomes of anterior cruciate ligament reconstructions: a systematic review and meta-analysis. Am J Sports Med 44:242–254

    Article  PubMed  Google Scholar 

  48. Todd DC, Ghasem AD, Xerogeanes JW (2015) Height, weight, and age predict quadriceps tendon length and thickness in skeletally immature patients. Am J Sports Med 43:945–952

    Article  PubMed  Google Scholar 

  49. Ueda Y, Matsushita T, Araki D, Kida A, Takiguchi K, Shibata Y et al (2017) Factors affecting quadriceps strength recovery after anterior cruciate ligament reconstruction with hamstring autografts in athletes. Knee Surg Sports Traumatol Arthrosc 25:3213–3219

    Article  PubMed  Google Scholar 

  50. Undheim MB, Cosgrave C, King E, Strike S, Marshall B, Falvey E et al (2015) Isokinetic muscle strength and readiness to return to sport following anterior cruciate ligament reconstruction: is there an association? A systematic review and a protocol recommendation. Br J Sports Med 49:1305–1310

    Article  PubMed  Google Scholar 

  51. van Eck CF, Schreiber VM, Mejia HA, Samuelsson K, van Dijk CN, Karlsson J et al (2010) “Anatomic” anterior cruciate ligament reconstruction: a systematic review of surgical techniques and reporting of surgical data. Arthroscopy 26:S2-12

    Article  PubMed  Google Scholar 

  52. Webster KE, Feller JA (2019) Clinical tests can be used to screen for second anterior cruciate ligament injury in younger patients who return to sport. Orthop J Sports Med 7:2325967119863003

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wellsandt E, Failla MJ, Snyder-Mackler L (2017) Limb symmetry indexes can overestimate knee function after anterior cruciate ligament injury. J Orthop Sports Phys Ther 47:334–338

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xerogeanes JW, Hammond KE, Todd DC (2012) Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction: an MRI-based study. J Bone Jt Surg Am 94:268–276

    Article  Google Scholar 

  55. Zwolski C, Schmitt LC, Quatman-Yates C, Thomas S, Hewett TE, Paterno MV (2015) The influence of quadriceps strength asymmetry on patient-reported function at time of return to sport after anterior cruciate ligament reconstruction. Am J Sports Med 43:2242–2249

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nikki Bailys, Melanie Insley, Jordan Marks, and Abbey Meisenheimer for their help in the initial preparation of data.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JLH, MAL, JWX oversaw and contributed to all aspects of the project and manuscript development. LT assisted with the statistical analyses. PAS, MN, and HSS assisted with project development and interpretation of the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jennifer L. Hunnicutt.

Ethics declarations

Conflict of interest

Dr. Xerogeanes declares conflict of interest (paid consultant for Arthrex and holds patent for device with Arthrex). Dr. Slone declares conflict of interest (editorial board for Am J Orthop and J Surg Orthop Advances).

Ethical approval

Prior to the conduct of this study, the institutional review board of Emory University approved the protocol (IRB #: 00106812).

Informed consent

Prior to the conduct of this study, the institutional review board approved the protocol and provided a waiver of informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunnicutt, J.L., Xerogeanes, J.W., Tsai, LC. et al. Terminal knee extension deficit and female sex predict poorer quadriceps strength following ACL reconstruction using all-soft tissue quadriceps tendon autografts. Knee Surg Sports Traumatol Arthrosc 29, 3085–3095 (2021). https://doi.org/10.1007/s00167-020-06351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06351-4

Keywords

Navigation