Skip to main content
Log in

Is the contralateral tibia a reliable template for reconstruction: a three-dimensional anatomy cadaveric study

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The contralateral anatomy is regularly used as a reconstruction template for corrective osteotomies of several deformities and pathological conditions. However, there is lack of evidence that the intra-individual differences between both tibiae are sufficiently small to use the contralateral tibia as a 3D reconstruction template for complex osteotomies. The aim of this study was to evaluate the intra-individual side differences of the tibia in length, torsion, angulation, and translation using 3D measurement techniques.

Methods

3D surface models of both tibiae were created from computed tomography data of 51 cadavers. The (mirrored) models of the right tibiae were divided into two halves at the centre of the shaft. Thereafter, the proximal and distal segments were aligned to the left (contralateral) tibia in an automated fashion. The relative 3D transformation between both aligned segments was measured to quantify the side difference in 6° of freedom (3D translation vector, 3 angles of rotation).

Results

The mean side difference in tibia length was 2.1 mm (SD 1.3 mm; range 0.2–5.9 mm). The mean side difference in torsion was 4.9° (SD 4.1°; range 0.2°–17.6°). The mean side difference in the coronal and sagittal planes was 1.1° (SD 0.9°; range 0.0°–4.6°) and 1.0° (SD 0.8°; range 0.1°–2.9°), respectively.

Conclusion

The present study confirms small side differences in torsion between the left and right tibia, while the side differences in the coronal and sagittal plane are probably negligible. The contralateral tibia seems to be a reliable reconstruction template for the 3D preoperative planning of complex corrective osteotomies of the tibia. However, torsional differences should be interpreted with caution, as a single cut-off value of a clinically relevant torsional side difference cannot be defined. The presented results are relevant to surgeons considering the contralateral tibia as a 3D reconstruction template for corrective osteotomies of the tibia.

Level of evidence

Basic science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali AM, Burton M, Hashmi M, Saleh M (2003) Treatment of displaced bicondylar tibial plateau fractures (OTA-41C2&3) in patients older than 60 years of age. J Orthop Trauma 17(5):346–352

    Article  PubMed  Google Scholar 

  2. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  3. Choo KJ, Morshed S (2014) Postoperative complications after repair of tibial plateau fractures. J Knee Surg 27(1):11–19

    Article  PubMed  Google Scholar 

  4. Dall’oca C, Maluta T, Lavini F, Bondi M, Micheloni GM, Bartolozzi P (2012) Tibial plateau fractures: compared outcomes between ARIF and ORIF. Strateg Trauma Limb Reconstr 7(3):163–175

    Article  Google Scholar 

  5. de Abreu-e-Silva GM, de Oliveira MH, Maranhao GS, Deligne Lde M, Pfeilsticker RM, Novais EN, Nunes TA, de Andrade MA (2015) Three-dimensional computed tomography evaluation of anterior cruciate ligament footprint for anatomic single-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 23(3):770–776

    Article  PubMed  Google Scholar 

  6. Furnstahl P, Vlachopoulos L, Schweizer A, Fucentese SF, Koch PP (2015) Complex osteotomies of tibial plateau malunions using computer-assisted planning and patient-specific surgical guides. J Orthop Trauma 29(8):e270–e276

    Article  PubMed  Google Scholar 

  7. Gosling T, Schandelmaier P, Muller M, Hankemeier S, Wagner M, Krettek C (2005) Single lateral locked screw plating of bicondylar tibial plateau fractures. Clin Orthop Relat Res 439:207–214

    Article  PubMed  CAS  Google Scholar 

  8. Hingsammer AM, Lazaros V, Dominik MC, Furnstahl P (2015) Three-dimensional corrective osteotomies of mal-united clavicles—is the contralateral anatomy a reliable template for reconstruction? Clin Anat 28(7):865–871

    Article  PubMed  Google Scholar 

  9. Honkonen SE (1995) Degenerative arthritis after tibial plateau fractures. J Orthop Trauma 9(4):273–277

    Article  PubMed  CAS  Google Scholar 

  10. Jakob RP, Haertel M, Stussi E (1980) Tibial torsion calculated by computerised tomography and compared to other methods of measurement. J Bone Joint Surg Br 62-B(2):238–242

    Article  PubMed  CAS  Google Scholar 

  11. Kettelkamp DB, Hillberry BM, Murrish DE, Heck DA (1988) Degenerative arthritis of the knee secondary to fracture malunion. Clin Orthop Relat Res 234:159–169

    Google Scholar 

  12. Khermosh O, Lior G, Weissman SL (1971) Tibial torsion in children. Clin Orthop Relat Res 79:25–31

    Article  PubMed  CAS  Google Scholar 

  13. Kunz M, Ma B, Rudan JF, Ellis RE, Pichora DR (2013) Image-guided distal radius osteotomy using patient-specific instrument guides. J Hand Surg Am 38(8):1618–1624

    Article  PubMed  Google Scholar 

  14. Lee JK, Lee S, Seong SC, Lee MC (2015) Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 23(8):2297–2305

    Article  PubMed  Google Scholar 

  15. Lichte P, Kobbe P, Lorken M, Pape HC (2010) Planning of corrective osteotomies of the lower limb. Unfallchirurg 113(7):573–583 (quiz 584)

    Article  PubMed  CAS  Google Scholar 

  16. Lustig S, Khiami F, Boyer P, Catonne Y, Deschamps G, Massin P (2010) Post-traumatic knee osteoarthritis treated by osteotomy only. Orthop Traumatol Surg Res 96(8):856–860

    Article  PubMed  CAS  Google Scholar 

  17. Manidakis N, Dosani A, Dimitriou R, Stengel D, Matthews S, Giannoudis P (2010) Tibial plateau fractures: functional outcome and incidence of osteoarthritis in 125 cases. Int Orthop 34(4):565–570

    Article  PubMed  Google Scholar 

  18. Miyake J, Murase T, Oka K, Moritomo H, Sugamoto K, Yoshikawa H (2012) Computer-assisted corrective osteotomy for malunited diaphyseal forearm fractures. J Bone Joint Surg Am 94(20):e150

    Article  PubMed  Google Scholar 

  19. Murase T, Oka K, Moritomo H, Goto A, Sugamoto K, Yoshikawa H (2009) Correction of severe wrist deformity following physeal arrest of the distal radius with the aid of a three-dimensional computer simulation. Arch Orthop Trauma Surg 129(11):1465–1471

    Article  PubMed  Google Scholar 

  20. Nagy L, Jankauskas L, Dumont CE (2008) Correction of forearm malunion guided by the preoperative complaint. Clin Orthop Relat Res 466(6):1419–1428

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paley D, Chaudray M, Pirone AM, Lentz P, Kautz D (1990) Treatment of malunions and mal-nonunions of the femur and tibia by detailed preoperative planning and the Ilizarov techniques. Orthop Clin North Am 21(4):667–691

    PubMed  CAS  Google Scholar 

  22. Paley D, Pfeil J (2000) Principles of deformity correction around the knee. Orthopade 29(1):18–38

    PubMed  CAS  Google Scholar 

  23. Papagelopoulos PJ, Partsinevelos AA, Themistocleous GS, Mavrogenis AF, Korres DS, Soucacos PN (2006) Complications after tibia plateau fracture surgery. Injury 37(6):475–484

    Article  PubMed  Google Scholar 

  24. Parratte S, Boyer P, Piriou P, Argenson JN, Deschamps G, Massin P, Sfhg (2011) Total knee replacement following intra-articular malunion. Orthop Traumatol Surg Res 97(6 Suppl):S118–S123

    Article  PubMed  CAS  Google Scholar 

  25. Paternostre F, Schwab PE, Thienpont E (2014) The combined Whiteside’s and posterior condylar line as a reliable reference to describe axial distal femoral anatomy in patient-specific instrument planning. Knee Surg Sports Traumatol Arthrosc 22(12):3054–3059

    Article  PubMed  Google Scholar 

  26. Rosen H, Sandick H (1955) The measurement of tibiofibular torsion. J Bone Joint Surg Am 37-A(4):847–855

    Article  PubMed  CAS  Google Scholar 

  27. Schneider P, Eberly DH (2002) Geometric tools for computer graphics. Morgan Kaufmann, Los Altos

    Google Scholar 

  28. Schweizer A, Furnstahl P, Harders M, Szekely G, Nagy L (2010) Complex radius shaft malunion: osteotomy with computer-assisted planning. Hand (N Y) 5(2):171–178

    Article  Google Scholar 

  29. Schweizer A, Furnstahl P, Nagy L (2012) Three-dimensional computed tomographic analysis of 11 scaphoid waist nonunions. J Hand Surg Am 37(6):1151–1158

    Article  PubMed  Google Scholar 

  30. Schweizer A, Furnstahl P, Nagy L (2014) Three-dimensional planing and correction of osteotomies in the forearm and the hand. Ther Umsch 71(7):391–396

    Article  PubMed  Google Scholar 

  31. Schweizer A, Mauler F, Vlachopoulos L, Nagy L, Furnstahl P (2016) Computer-assisted 3-dimensional reconstructions of scaphoid fractures and nonunions with and without the use of patient-specific guides: early clinical outcomes and postoperative assessments of reconstruction accuracy. J Hand Surg Am 41(1):59–69

    Article  PubMed  Google Scholar 

  32. Strecker W, Keppler P (2002) Analysis and correction of leg deformities. 1: analysis. Unfallchirurg 105(9):811–829

    Article  PubMed  CAS  Google Scholar 

  33. Strecker W, Keppler P (2002) Analysis and correction of leg deformities. 2. Correction. Unfallchirurg 105(10):901–917

    Article  PubMed  CAS  Google Scholar 

  34. Strecker W, Keppler P, Gebhard F, Kinzl L (1997) Length and torsion of the lower limb. J Bone Joint Surg Br 79(6):1019–1023

    Article  PubMed  CAS  Google Scholar 

  35. Victor J, Premanathan A (2013) Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study. Bone Joint J 95-B(11 Suppl A):153–158

    Article  PubMed  CAS  Google Scholar 

  36. Vlachopoulos L, Dunner C, Gass T, Graf M, Goksel O, Gerber C, Szekely G, Furnstahl P (2015) Computer algorithms for three-dimensional measurement of humeral anatomy: analysis of 140 paired humeri. J Shoulder Elbow Surg 25:e38–e48

    Article  PubMed  Google Scholar 

  37. Vlachopoulos L, Schweizer A, Graf M, Nagy L, Furnstahl P (2015) Three-dimensional postoperative accuracy of extra-articular forearm osteotomies using CT-scan based patient-specific surgical guides. BMC Musculoskelet Disord 16:336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Vlachopoulos L, Schweizer A, Meyer DC, Gerber C, Fürnstahl P (2016) Three-dimensional corrective osteotomies of complex malunited humeral fractures using patient-specific guides. J Shoulder Elbow Surg. doi:10.1016/j.jse.2016.04.038

    Article  PubMed  Google Scholar 

  39. Vroemen JC, Dobbe JG, Jonges R, Strackee SD, Streekstra GJ (2012) Three-dimensional assessment of bilateral symmetry of the radius and ulna for planning corrective surgeries. J Hand Surg Am 37(5):982–988

    Article  PubMed  CAS  Google Scholar 

  40. Vroemen JC, Dobbe JG, Strackee SD, Streekstra GJ (2013) Positioning evaluation of corrective osteotomy for the malunited radius: 3-D CT versus 2-D radiographs. Orthopedics 36(2):e193–e199

    Article  PubMed  Google Scholar 

  41. Waidelich HA, Strecker W, Schneider E (1992) Computed tomographic torsion-angle and length measurement of the lower extremity. The methods, normal values and radiation load. Rofo 157(3):245–251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Swiss Canton of Zurich through a Highly Specialized Medicine Grant. We also thank Prof. Burkhardt Seifert for his support in the statistical evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Schenk.

Ethics declarations

Conflict of interest

The author declares that the research for and communication of this independent body of work does not constitute any financial or other conflict of interest.

Funding

Part of this work was founded by a Highly Specialized Medicine (HSM2) grant of the Canton Zürich, Switzerland.

Ethical approval

The ethics committee of the canton Zurich approved the acquisition of the data. The CT data were provided by the Surgical Institute for Computer Assisted Surgery (SICAS) in an anonymized fashion and, therefore, an individual approval of the study was not necessary.

Informed consent

According to SiCas, the subjects gave informed consent that the data can be used ex-vivo for research purpose like this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenk, P., Vlachopoulos, L., Hingsammer, A. et al. Is the contralateral tibia a reliable template for reconstruction: a three-dimensional anatomy cadaveric study. Knee Surg Sports Traumatol Arthrosc 26, 2324–2331 (2018). https://doi.org/10.1007/s00167-016-4378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4378-5

Keywords

Navigation