Skip to main content

Advertisement

Log in

Novel approach to dynamic knee laxity measurement using capacitive strain gauges

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Knee joint laxities are observed in patients after severe trauma to the joint, resulting in ligament tears. Specifically, injuries to the anterior cruciate ligament may cause a significant instability. The degree of these laxities is essential in diagnostics and may affect which treatment option is suggested.

Methods

Polydimethylsiloxane (PDMS) strain gauges are proposed as a non-invasive, highly accurate and easy-to-use measurement method to quantify anterolateral and rotational laxities of the knee joint during active and passive motion. In this work, proof-of-concept measurements and a prototype of the proposed device are displayed. The measurements were taken using a knee test rig, which has specifically been designed for this purpose. This apparatus allows the simulation of isolated knee joint instabilities with a motor-controlled model of a human knee.

Results

The absolute sensitivity \(\frac{{\Delta C}}{{\Delta l}}\) of an exemplary sensor was determined to be 2.038 \(\frac{\text{pF}}{\text{mm}}\); the relative sensitivity \(\frac{{\Delta C}}{\varepsilon }\) was 1.121 \(\frac{\text{pF}}{\% }\). Optimal positions of sensors to capture bone-to-bone displacement as projected displacement on the skin were identified.

Conclusion

PDMS strain gauges are capable of measuring bone-to-bone displacements on the skin. We present an experimental in vitro study using an artificial knee test rig to simulate knee joint laxities and display the feasibility of our novel measurement approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahldén M, Hoshino Y, Samuelsson K, Araujo P, Musahl V, Karlsson J (2012) Dynamic knee laxity measurement devices. Knee Surg Sports Traumatol Arthrosc 20(4):621–632

    Article  PubMed  Google Scholar 

  2. Ahldén M, Araujo P, Hoshino Y, Samuelsson K, Middleton KK, Nagamune K, Karlsson J, Musahl V (2012) Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee Surg Sports Traumatol Arthrosc 20(4):708–712

    Article  PubMed  Google Scholar 

  3. Alam M, Bull AMJ, Thomas R, Amis AA (2013) A clinical device for measuring internal-external rotational laxity of the knee. Am J Sports Med 41(1):87–94

    Article  PubMed  Google Scholar 

  4. Amis AA, Cuomo P, Rama RBS, Giron F, Bull AMJ, Thomas R, Aglietti P (2008) Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Oper Tech Orthop 18(3):196–203

    Article  Google Scholar 

  5. Araki D, Kuroda R, Kubo S, Fujita N, Tei K, Nishimoto K, Hoshino Y, Matsushita T, Matsumoto T, Nagamune K, Kurosaka M (2011) A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 35(3):439–446

    Article  PubMed Central  PubMed  Google Scholar 

  6. Arneja S, Leith J (2009) Review article: validity of the KT-1000 knee ligament arthrometer. J Orthop Surg (Hong Kong). 17(1):77–79

    CAS  Google Scholar 

  7. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med 33(10):1579–1602

    Article  PubMed  Google Scholar 

  8. Branch TP, Mayr HO, Browne JE, Campbell JC, Stoehr A, Jacobs C (2010) Instrumented examination of anterior cruciate ligament injuries: minimizing flaws of the manual clinical examination. Arthroscopy 26(7):997–1004

    Article  PubMed  Google Scholar 

  9. Brunne J, Kazan S, Wallrabe U (2011) In-plane DEAP stack actuators for optical MEMS applications. In: Proceedings of SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD). 2(1):79761U–79761U–10. doi:10.1117/12.880232

  10. Highgenboten CL, Jackson AW, Jansson KA, Meske NB (1992) KT-1000 arthrometer: conscious and unconscious test results using 15, 20, and 30 pounds of force. Am J Sports Med 20(4):450–454

    Article  CAS  PubMed  Google Scholar 

  11. Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104

    Article  PubMed  Google Scholar 

  12. Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2012) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 20(7):1323–1330

    Article  PubMed  Google Scholar 

  13. Imbert P, Belvedere C, Leardini A (2014) Human knee laxity in ACL-deficient and physiological contralateral joints: intra-operative measurements using a navigation system. Biomed Eng Online 13(1):86

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kubo S, Muratsu H, Yoshiya S, Mizuno K, Kurosaka M (2007) Reliability and usefulness of a new in vivo measurement system of the pivot shift. Clin Orthop Relat Res 454:54–58

    Article  PubMed  Google Scholar 

  15. Kuroda R, Hoshino Y, Araki D, Nishizawa Y, Nagamune K, Matsumoto T, Kubo S, Matsushita T, Kurosaka M (2012) Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc 20(4):686–691

    Article  PubMed  Google Scholar 

  16. Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16(5):487–492

    Article  PubMed  Google Scholar 

  17. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20(4):713–717

    Article  PubMed  Google Scholar 

  18. Mayr HO, Hoell A, Bernstein A, Hube R, Zeiler C, Kalteis T, Suedkamp NP, Stoehr A (2011) Validation of a measurement device for instrumented quantification of anterior translation and rotational assessment of the knee. Arthroscopy 27(8):1096–1104

    Article  PubMed  Google Scholar 

  19. Paletta GA, Warren RF (1994) Knee injuries and Alpine skiing. Treat Rehabil Sports Med 17(6):411–423

    Article  CAS  Google Scholar 

  20. Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52(1):66

    Article  PubMed  Google Scholar 

  21. Ruhhammer J, Zens M, Goldschmidtboeing F, Seifert A, Woias P (2014) Highly elastic conductive polymeric MEMS. Sci Technol Adv Mater 16(1):015003

    Article  Google Scholar 

  22. Wiertsema SH, van Hooff HJA, Migchelsen LAA, Steultjens MPM (2008) Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. Knee 15(2):107–110

    Article  CAS  PubMed  Google Scholar 

  23. Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, Marcacci M (2013) Innovative technology for knee laxity evaluation: clinical applicability and reliability of inertial sensors for quantitative analysis of the pivot-shift test. Clin Sports Med 32(1):61–70

    Article  PubMed  Google Scholar 

  24. Zens M, Ruhhammer J, Goldschmidtboeing F, Woias P, Mayr HO, Niemeyer P, Bernstein A (2014) Novel measurement technique for knee joint laxities using polymeric capacitive strain gauges. IEEE MeMeA 2014. doi:10.1109/MeMeA.2014.6860064

    Google Scholar 

  25. Zens M, Ruhhammer J, Goldschmidtboeing F, Woias P, Feucht MJ, Mayr HO, Niemeyer P (2014) A new approach to determine ligament strain using polydimethylsiloxane strain gauges: exemplary measurements of the anterolateral ligament. J Biomech Eng 136(12):124504

    Article  PubMed  Google Scholar 

  26. Zens M, Niemeyer P, Ruhhammer J, Bernstein A, Woias P, Mayr HO, Suedkamp NP, Feucht MJ (2015) Length changes of the anterolateral ligament during passive knee motion: a human cadaveric study. Am J Sports Med. doi:10.1177/0363546515594373

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) (WO 883/15-1 and WO 883/16-1), the MFG-Stiftung Baden-Wuerttemberg and the Deutsche Kniegesellschaft e. V. (DKG) for research grants and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zens, M., Niemeyer, P., Bernstein, A. et al. Novel approach to dynamic knee laxity measurement using capacitive strain gauges. Knee Surg Sports Traumatol Arthrosc 23, 2868–2875 (2015). https://doi.org/10.1007/s00167-015-3771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3771-9

Keywords

Navigation