Skip to main content
Log in

Three different cruciate-sacrificing TKA designs: minor intraoperative kinematic differences and negligible clinical differences

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The goal of this study was to compare three types of mobile-bearing posterior cruciate ligament (PCL)-sacrificing TKA. The hypothesis was that the three designs provide differences in flexion stability and femoral rollback and improved clinical score at 2-year follow-up.

Methods

Three groups of patients, divided according to implant design, were analysed retrospectively. All operations were guided by a non-image-based navigation system that recorded relative femoral and tibial positions in native and implanted knees during: passive range of motion and anterior drawer test at 90° flexion. WOMAC, KSS and SF36 scores were collected pre-operatively and at 2-year follow-up.

Results

There are no differences in kinematic or clinical performance of the three implants, except for the antero-posterior translation during stress test in flexion: only Cohort B had comparable pre- and post-operative laxity test values (p < 0.001). All three TKA designs allowed to maintain pre-operative tibial rotation pattern through all range of knee flexion. All clinical scores of the three patient cohorts were significantly improved post-operatively compared to the pre-operative values (p < 0.001). Moreover, we found no differences among post-operative results of the three designs.

Conclusion

Despite design variations, mobile-bearing PCL-sacrificing TKA reproduces femoral rollback and screw-home with little or no difference in clinical or functional scores at a follow-up of 2 years.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baier C, Springorum H-R, Götz J, Schaumburger J, Lüring C, Grifka J, Beckmann J (2013) Comparing navigation-based in vivo knee kinematics pre- and postoperatively between a cruciate-retaining and a cruciate-substituting implant. Int Orthop 37:407–414

    Article  PubMed Central  PubMed  Google Scholar 

  2. Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate–retaining and -substituting knee arthroplasties. J Arthroplast 12:297–304

    Article  CAS  Google Scholar 

  3. Belvedere C, Tamarri S, Notarangelo DP, Ensini A, Feliciangeli A, Leardini A (2013) Three-dimensional motion analysis of the human knee joint: comparison between intra- and post-operative measurements. Knee Surg Sports Traumatol Arthrosc 21:2375–2383

    Article  CAS  PubMed  Google Scholar 

  4. Bignozzi S, Lopomo N, Zaffagnini S, Martelli S, Bruni D, Marcacci M (2008) Accuracy, reliability, and repeatability of navigation systems in clinical practice. Oper Tech Orthop 18:154–157

    Article  Google Scholar 

  5. Browne C, Hermida JC, Bergula A, Colwell CW Jr, D’Lima DD (2005) Patellofemoral forces after total knee arthroplasty: effect of extensor moment arm. Knee 12:81–88

    Article  PubMed  Google Scholar 

  6. Casino D, Zaffagnini S, Martelli S, Lopomo N, Bignozzi S, Iacono F, Russo A, Marcacci M (2009) Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system. Knee Surg Sports Traumatol Arthrosc 17:369–373

    Article  PubMed  Google Scholar 

  7. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (2001) The influence of femoral rollback on patellofemoral contact loads in total knee arthroplasty. J Arthroplast 16:909–918

    Article  CAS  Google Scholar 

  8. Dennis DA, Komistek RD (2005) Kinematics of mobile-bearing total knee arthroplasty. Instr Course Lect 54:207–220

    PubMed  Google Scholar 

  9. Dennis DA, Komistek RD, Colwell CE Jr, Ranawat CS, Scott RD, Thornhill TS, Lapp MA (1998) In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res 356:47–57

    Article  PubMed  Google Scholar 

  10. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    Article  PubMed  Google Scholar 

  11. Fantozzi S, Catani F, Ensini A, Leardini A, Giannini S (2006) Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living. J Orthop Res 24:2222–2229

    Article  PubMed  Google Scholar 

  12. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  CAS  PubMed  Google Scholar 

  13. Hartford JM, Banit D, Hall K, Kaufer H (2001) Radiographic analysis of low contact stress meniscal bearing total knee replacements. J Bone Joint Surg Am 83-A:229–234

    CAS  PubMed  Google Scholar 

  14. Hofmann AA, Tkach TK, Evanich CJ, Camargo MP (2000) Posterior stabilization in total knee arthroplasty with use of an ultracongruent polyethylene insert. J Arthroplast 15:576–583

    Article  CAS  Google Scholar 

  15. Ishii Y, Noguchi H, Takeda M, Sato J, Sakurai T, Toyabe S-I (2013) In vivo anteroposterior translation after meniscal-bearing total knee arthroplasty: effects of soft tissue conditions and flexion angle. Eur J Orthop Surg Traumatol. doi:10.1007/s00590-013-1271-5

    Google Scholar 

  16. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI. J Biomech 38:269–276

    Article  CAS  PubMed  Google Scholar 

  17. Jones RE, Huo MH (2006) Rotating platform knees: an emerging clinical standard: in the affirmative. J Arthroplast 21:33–36

    Article  Google Scholar 

  18. Li G, Zayontz S, Most E, Otterberg E, Sabbag K, Rubash HE (2001) Cruciate-retaining and cruciate-substituting total knee arthroplasty: an in vitro comparison of the kinematics under muscle loads. J Arthroplast 16:150–156

    Article  CAS  Google Scholar 

  19. Markolf KL, Graff-Radford A, Amstutz HC (1978) In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 60:664–674

    CAS  PubMed  Google Scholar 

  20. Martelli S, Zaffagnini S, Bignozzi S, Bontempi M, Marcacci M (2006) Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech 21:279–287

    Article  CAS  Google Scholar 

  21. Maruyama S, Yoshiya S, Matsui N, Kuroda R, Kurosaka M (2004) Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplast 19:349–353

    Article  Google Scholar 

  22. Massin P, Boyer P, Sabourin M (2012) Less femorotibial rotation and AP translation in deep-dished total knee arthroplasty. An intraoperative kinematic study using navigation. Knee Surg Sports Traumatol Arthrosc 20:1714–1719

    Article  PubMed  Google Scholar 

  23. Matsuzaki T, Matsumoto T, Kubo S, Muratsu H, Matsushita T, Kawakami Y, Ishida K, Oka S, Kuroda R, Kurosaka M (2014) Tibial internal rotation is affected by lateral laxity in cruciate-retaining total knee arthroplasty: an intraoperative kinematic study using a navigation system and offset-type tensor. Knee Surg Sports Traumatol Arthrosc 22:615–620

    Article  PubMed  Google Scholar 

  24. Moonot P, Mu S, Railton GT, Field RE, Banks SA (2009) Tibiofemoral kinematic analysis of knee flexion for a medial pivot knee. Knee Surg Sports Traumatol Arthrosc 17:927–934

    Article  PubMed  Google Scholar 

  25. Mugnai R, Digennaro V, Ensini A, Leardini A, Catani F (2014) Can TKA design affect the clinical outcome? Comparison between two guided-motion systems. Knee Surg Sports Traumatol Arthrosc 22:581–589

    Article  PubMed  Google Scholar 

  26. Nabeyama R, Matsuda S, Miura H, Kawano T, Nagamine R, Mawatari T, Tanaka K, Iwamoto Y (2003) Changes in anteroposterior stability following total knee arthroplasty. J Orthop Sci 8:526–531

    Article  PubMed  Google Scholar 

  27. Nagao N, Tachibana T, Mizuno K (1998) The rotational angle in osteoarthritic knees. Int Orthop 22:282–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Peters CL, Mulkey P, Erickson J, Anderson MB, Pelt CE (2014) Comparison of total knee arthroplasty with highly congruent anterior-stabilized bearings versus a cruciate-retaining design. Clin Orthop Relat Res 472:175–180

    Article  PubMed  Google Scholar 

  29. Ranawat CS, Komistek RD, Rodriguez JA, Dennis DA, Anderle M (2004) In vivo kinematics for fixed and mobile-bearing posterior stabilized knee prostheses. Clin Orthop Relat Res 418:184–190

    Article  PubMed  Google Scholar 

  30. Saari T, Carlsson L, Karlsson J, Kärrholm J (2005) Knee kinematics in medial arthrosis. Dynamic radiostereometry during active extension and weight-bearing. J Biomech 38:285–292

    Article  PubMed  Google Scholar 

  31. Seon J-K, Park J-K, Shin Y-J, Seo H-Y, Lee K-B, Song E-K (2011) Comparisons of kinematics and range of motion in high-flexion total knee arthroplasty: cruciate retaining vs. substituting designs. Knee Surg Sports Traumatol Arthrosc 19:2016–2022

    Article  PubMed  Google Scholar 

  32. Siebold R, Louisia S, Canty J, Bartlett RJ (2007) Posterior stability in fixed-bearing versus mobile-bearing total knee replacement: a radiological comparison of two implants. Arch Orthop Trauma Surg 127:97–104

    Article  CAS  PubMed  Google Scholar 

  33. Siston RA, Giori NJ, Goodman SB, Delp SL (2006) Intraoperative passive kinematics of osteoarthritic knees before and after total knee arthroplasty. J Orthop Res 24:1607–1614

    Article  PubMed  Google Scholar 

  34. Stiehl JB (2009) Comparison of tibial rotation in fixed and mobile bearing total knee arthroplasty using computer navigation. Int Orthop 33:679–685

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tayot O, Aït Si Selmi T, Neyret P (2001) Results at 11.5 years of a series of 376 posterior stabilized HLS1 total knee replacements. Survivorship analysis, and risk factors for failure. Knee 8:195–205

    Article  CAS  PubMed  Google Scholar 

  36. Uvehammer J, Kärrholm J, Brandsson S (2000) In vivo kinematics of total knee arthroplasty. Concave versus posterior-stabilised tibial joint surface. J Bone Joint Surg Br 82:499–505

    Article  CAS  PubMed  Google Scholar 

  37. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87:646–655

    Article  CAS  PubMed  Google Scholar 

  38. Wang C-J, Wang J-W, Chen H-S (2004) Comparing cruciate-retaining total knee arthroplasty and cruciate-substituting total knee arthroplasty: a prospective clinical study. Chang Gung Med J 27:578–585

    PubMed  Google Scholar 

  39. Wolterbeek N, Nelissen RGHH, Valstar ER (2012) No differences in in vivo kinematics between six different types of knee prostheses. Knee Surg Sports Traumatol Arthrosc 20:559–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Yoshiya S, Matsui N, Komistek RD, Dennis DA, Mahfouz M, Kurosaka M (2005) In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplast 20:777–783

    Article  Google Scholar 

  41. Yue B, Varadarajan KM, Moynihan AL, Liu F, Rubash HE, Li G (2011) Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J Orthop Res 29:40–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mo Saffarini for his assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Bignozzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bignozzi, S., Zaffagnini, S., Akkawi, I. et al. Three different cruciate-sacrificing TKA designs: minor intraoperative kinematic differences and negligible clinical differences. Knee Surg Sports Traumatol Arthrosc 22, 3113–3120 (2014). https://doi.org/10.1007/s00167-014-3200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3200-5

Keywords

Navigation