Skip to main content
Log in

Comparison of stability and kinematics of the natural knee versus a PS TKA with a ‘third condyle’

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The goal of this study was to compare the kinematics of knees before and after total knee arthroplasty (TKA) that relies on an inter-condylar ‘third condyle’. The hypothesis was that the ‘third condyle’ provides sufficient flexion stability and induces a close to normal femoral rollback, thus granting natural joint kinematics.

Methods

Intra-operative navigation data were collected from 29 consecutive cases that received a cemented TKA (HLS Noetos, Tornier SA, France) designed with an inter-condylar ‘third condyle’ that engages within the tibial insert beyond 35° flexion. Operations were guided by a non-image-based system (BLU-IGS, Orthokey Italia srl, Italy) that recorded relative femoral and tibial positions in native and implanted knees during: passive range of motion, anterior drawer test at 90° flexion, and varus–valgus stress tests at full extension and at 30° flexion.

Results

The total internal tibial rotation during flexion was similar for native (8.2 ± 4.2°) and implanted knees (8.0 ± 5.4°). The lateral femoral condyle was more posterior in implanted knees (1.2 ± 9.4 mm) than in native knees (9.5 ± 3.6 mm) throughout early flexion (p < 0.01), but this difference diminished beyond 100° flexion (n.s.). The implanted knees did not exhibit paradoxical external tibial rotation. Varus–valgus laxity in full extension was lower for implanted knees than for native knees (p = 0.0221), but at 30° flexion was almost identical for both native and implanted knees. Anteroposterior laxity was similar in implanted and native knees.

Conclusions

The ‘third condyle’ TKA provides similar anteroposterior and mediolateral stability to the natural knee. This feature granted an adequate balance between laxity and constraint to reproduce natural joint kinematics, including smooth femoral rollback, without causing paradoxical external tibial rotation.

Level of evidence

Comparative study, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Argenson J-NA, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac J-M (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38:277–284

    Article  PubMed  Google Scholar 

  2. Baier C, Springorum H-R, Götz J, Schaumburger J, Lüring C, Grifka J, Beckmann J (2013) Comparing navigation-based in vivo knee kinematics pre- and postoperatively between a cruciate-retaining and a cruciate-substituting implant. Int Orthop 37:407–414

    Article  PubMed Central  PubMed  Google Scholar 

  3. Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12:297–304

    Article  CAS  PubMed  Google Scholar 

  4. Barink M, Meijerink H, Verdonschot N, Kampen A, Waal Malefijt M (2007) Asymmetrical total knee arthroplasty does not improve patella tracking: a study without patella resurfacing. Knee Surg Sports Traumatol Arthrosc 15:184–191

    Article  PubMed  Google Scholar 

  5. Bellemans J, Robijns F, Duerinckx J, Banks S, Vandenneucker H (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13:193–196

    Article  CAS  PubMed  Google Scholar 

  6. Belvedere C, Ensini A, Leardini A, Dedda V, Feliciangeli A, Cenni F, Timoncini A, Barbadoro P, Giannini S (2014) Tibio-femoral and patello-femoral joint kinematics during navigated total knee arthroplasty with patellar resurfacing. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2825-0

    Google Scholar 

  7. Belvedere C, Tamarri S, Notarangelo DP, Ensini A, Feliciangeli A, Leardini A (2013) Three-dimensional motion analysis of the human knee joint: comparison between intra- and post-operative measurements. Knee Surg Sports Traumatol Arthrosc 21:2375–2383

    Article  CAS  PubMed  Google Scholar 

  8. Bignozzi S, Lopomo N, Zaffagnini S, Martelli S, Bruni D, Marcacci M (2008) Accuracy, reliability, and repeatability of navigation systems in clinical practice. Oper Tech Orthop 18:154–157

    Article  Google Scholar 

  9. Callaghan JJ, O’Rourke MR, Goetz DD, Schmalzried TP, Campbell PA, Johnston RC (2002) Tibial post impingement in posterior-stabilized total knee arthroplasty. Clin Orthop Relat Res 404:83–88

  10. Casino D, Zaffagnini S, Martelli S, Lopomo N, Bignozzi S, Iacono F, Russo A, Marcacci M (2009) Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system. Knee Surg Sports Traumatol Arthrosc 17:369–373

    Article  PubMed  Google Scholar 

  11. Cates HE, Komistek RD, Mahfouz MR, Schmidt MA, Anderle M (2008) In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J Arthroplasty 23:1057–1067

    Article  PubMed  Google Scholar 

  12. Clarke HD, Math KR, Scuderi GR (2004) Polyethylene post failure in posterior stabilized total knee arthroplasty. J Arthroplasty 19:652–657

    Article  PubMed  Google Scholar 

  13. Cromie MJ, Siston RA, Giori NJ, Delp SL (2008) Posterior cruciate ligament removal contributes to abnormal knee motion during posterior stabilized total knee arthroplasty. J Orthop Res 26:1494–1499

    Article  PubMed  Google Scholar 

  14. Delport HP, Banks SA, De Schepper J, Bellemans J (2006) A kinematic comparison of fixed- and mobile-bearing knee replacements. J Bone Joint Surg Br 88:1016–1021

    Article  CAS  PubMed  Google Scholar 

  15. Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res 331:107–117

  16. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

  17. Ezechieli M, Dietzek J, Becher C, Ettinger M, Calliess T, Ostermeier S, Windhagen H (2012) The influence of a single-radius-design on the knee stability. Technol Health Care 20:527–534

    CAS  PubMed  Google Scholar 

  18. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  CAS  PubMed  Google Scholar 

  19. Hall J, Copp SN, Adelson WS, D’Lima DD, Colwell CW Jr (2008) Extensor mechanism function in single-radius vs multiradius femoral components for total knee arthroplasty. J Arthroplasty 23:216–219

    Article  PubMed  Google Scholar 

  20. Hanson GR, Suggs JF, Kwon Y-M, Freiberg AA, Li G (2007) In vivo anterior tibial post contact after posterior stabilizing total knee arthroplasty. J Orthop Res 25:1447–1453

    Article  PubMed  Google Scholar 

  21. Hollinghurst D, Stoney J, Ward T, Pandit H, Beard D, Murray DW (2007) In vivo sagittal plane kinematics of the Avon patellofemoral arthroplasty. J Arthroplasty 22:117–123

    Article  PubMed  Google Scholar 

  22. Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82:1189–1195

    Article  CAS  PubMed  Google Scholar 

  23. Klein GR, Parvizi J, Rapuri VR, Austin MS, Hozack WJ (2004) The effect of tibial polyethylene insert design on range of motion: evaluation of in vivo knee kinematics by a computerized navigation system during total knee arthroplasty. J Arthroplasty 19:986–991

    PubMed  Google Scholar 

  24. Lin K-J, Huang C-H, Liu Y-L, Chen W-C, Chang T-W, Yang C-T, Lai Y-S, Cheng C-K (2011) Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech (Bristol, Avon) 26:847–852

    Article  Google Scholar 

  25. Lüring C, Oczipka F, Perlick L, Tingart M, Grifka J, Bäthis H (2009) Two year follow-up comparing computer assisted versus freehand TKR on joint stability, muscular function and patients satisfaction. Knee Surg Sports Traumatol Arthrosc 17:228–232

    Article  PubMed  Google Scholar 

  26. Martelli S, Zaffagnini S, Bignozzi S, Bontempi M, Marcacci M (2006) Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech (Bristol, Avon) 21:279–287

    Article  CAS  Google Scholar 

  27. Mihalko WM, Ali M, Phillips MJ, Bayers-Thering M, Krackow KA (2008) Passive knee kinematics before and after total knee arthroplasty: are we correcting pathologic motion? J Arthroplasty 23:57–60

    Article  PubMed  Google Scholar 

  28. Pandit H, Ward T, Hollinghurst D, Beard DJ, Gill HS, Thomas NP, Murray DW (2005) Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement. J Bone Joint Surg Br 87:940–945

    Article  CAS  PubMed  Google Scholar 

  29. Paterson NR, Teeter MG, MacDonald SJ, McCalden RW, Naudie DDR (2013) The 2012 Mark Coventry award: a retrieval analysis of high flexion versus posterior-stabilized tibial inserts. Clin Orthop Relat Res 471:56–63

    Article  PubMed Central  PubMed  Google Scholar 

  30. Picard F, Deakin AH, Clarke IV, Dillon JM, Kinninmonth AW (2007) A quantitative method of effective soft tissue management for varus knees in total knee replacement surgery using navigational techniques. Proc Inst Mech Eng H 221:763–772

    Article  CAS  PubMed  Google Scholar 

  31. Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB (2001) Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. J Bone Joint Surg Am 83-A:390–397

    CAS  PubMed  Google Scholar 

  32. Seon J-K, Park J-K, Shin Y-J, Seo H-Y, Lee K-B, Song E-K (2011) Comparisons of kinematics and range of motion in high-flexion total knee arthroplasty: cruciate retaining vs. substituting designs. Knee Surg Sports Traumatol Arthrosc 19:2016–2022

    Article  PubMed  Google Scholar 

  33. Shi X, Shen B, Yang J, Kang P, Zhou Z, Pei F (2012) In vivo kinematics comparison of fixed- and mobile-bearing total knee arthroplasty during deep knee bending motion. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-2333-7

    Google Scholar 

  34. Siston RA, Giori NJ, Goodman SB, Delp SL (2006) Intraoperative passive kinematics of osteoarthritic knees before and after total knee arthroplasty. J Orthop Res 24:1607–1614

    Article  PubMed  Google Scholar 

  35. Stiehl JB (2009) Comparison of tibial rotation in fixed and mobile bearing total knee arthroplasty using computer navigation. Int Orthop 33:679–685

    Article  PubMed Central  PubMed  Google Scholar 

  36. Stoddard JE, Deehan DJ, Bull AMJ, McCaskie AW, Amis AA (2013) The kinematics and stability of single-radius versus multi-radius femoral components related to mid-range instability after TKA. J Orthop Res 31:53–58

    Article  PubMed  Google Scholar 

  37. Suggs JF, Hanson GR, Park SE, Moynihan AL, Li G (2008) Patient function after a posterior stabilizing total knee arthroplasty: cam-post engagement and knee kinematics. Knee Surg Sports Traumatol Arthrosc 16:290–296

    Article  PubMed  Google Scholar 

  38. Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24:972–978

    Article  PubMed  Google Scholar 

  39. Tayot O, Aït Si Selmi T, Neyret P (2001) Results at 11.5 years of a series of 376 posterior stabilized HLS1 total knee replacements. Survivorship analysis, and risk factors for failure. Knee 8:195–205

    Article  CAS  PubMed  Google Scholar 

  40. Walker PS, Heller Y, Yildirim G, Immerman I (2011) Reference axes for comparing the motion of knee replacements with the anatomic knee. Knee 18:312–316

    Article  CAS  PubMed  Google Scholar 

  41. Wolterbeek N, Nelissen RGHH, Valstar ER (2012) No differences in in vivo kinematics between six different types of knee prostheses. Knee Surg Sports Traumatol Arthrosc 20:559–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yue B, Varadarajan KM, Moynihan AL, Liu F, Rubash HE, Li G (2011) Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J Orthop Res 29:40–46

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Bignozzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaffagnini, S., Bignozzi, S., Saffarini, M. et al. Comparison of stability and kinematics of the natural knee versus a PS TKA with a ‘third condyle’. Knee Surg Sports Traumatol Arthrosc 22, 1778–1785 (2014). https://doi.org/10.1007/s00167-014-3016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3016-3

Keywords

Navigation