Skip to main content
Log in

Intercondylar notch size influences cyclops formation after anterior cruciate ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to investigate the incidence of cyclops lesions and its relationship with the cross-sectional area of the intercondylar notch.

Methods

For this study, 55 patients (24 male and 31 female) underwent follow-up arthroscopy after bi-socket anterior cruciate ligament reconstruction with hamstring tendon grafts were included. All patients underwent magnetic resonance imaging measurements of intercondylar notch dimensions. We compared the femoral intercondylar notch sizes and bone tunnel sizes between knees with cyclops lesions (cyclops group) and those without cyclops lesions (no-cyclops group). The mean percentage of the tunnel size to the cross-sectional area of the femoral intercondylar notch was also compared between the groups. The median follow-up duration was 3.8 years.

Results

Cyclops lesions were found in 15 of the 55 knees (27.3 %) on second-look arthroscopy (cyclops group). Only 6 of the 55 knees (10.9 %) had extension loss (cyclops syndrome). The cyclops group included 3 men and 12 women. The two groups showed a statistical difference in sex variation (P = 0.04). No significant differences were found in the femoral and tibial tunnel sizes between the two groups. The cross-sectional area of the femoral intercondylar notch was significantly smaller in the cyclops group (251.7 ± 63.2 mm2) than in the no-cyclops group (335.6 ± 77.6 mm2) (P < 0.001). The percentage of the total femoral tunnel size to the cross-sectional area of the femoral intercondylar notch was significantly higher in the cyclops group (18.6 ± 5.3 %) than in the no-cyclops group (13.2 ± 3.6 %) (P = 0.02).

Conclusions

A smaller intercondylar notch size may be a potential risk factor for cyclops lesion formation.

Level of evidence

Case–control study, Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahn JH, Yoo JC, Yang HS et al (2007) Second-look arthroscopic findings of 208 patients after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 15(3):242–248

    Article  PubMed  Google Scholar 

  2. Anderson AF, Dome DC, Gautam S et al (2001) Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29(1):58–66

    CAS  PubMed  Google Scholar 

  3. Araki D, Kuroda R, Kubo S et al (2011) A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 35(3):439–446

    Article  PubMed Central  PubMed  Google Scholar 

  4. Baker SJ, Gill GW, Kieffer DA (1995) Race and sex determination from the intercondylar notch of the distal femur. In: Gill GW, Rhine S (eds) Skeletal attribution of race. Churchill Livingstone, New York, pp 91–95

    Google Scholar 

  5. Bernard M, Hertel P, Hornung H et al (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–22

    CAS  PubMed  Google Scholar 

  6. Bradley DM, Bergman AG, Dillingham MF (2000) MR imaging of cyclops lesions. Am J Roentgenol 174(3):719–726

    Article  CAS  Google Scholar 

  7. Cha J, Choi SH, Kwon JW et al (2012) Analysis of cyclops lesions after different anterior cruciate ligament reconstructions: a comparison of the single-bundle and remnant bundle preservation techniques. Skeletal Radiol 41(8):997–1002

    Article  PubMed  Google Scholar 

  8. Charlton WP, St John TA, Ciccotti MG et al (2002) Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med 30(3):329–333

    PubMed  Google Scholar 

  9. Dandy DJ, Edwards DJ (1994) Problems in regaining full extension of the knee after anterior cruciate ligament reconstruction: does arthrofibrosis exist? Knee Surg Sports Traumatol Arthrosc 2:76–79

    Article  CAS  PubMed  Google Scholar 

  10. Delcogliano A, Franzese S, Branca A et al (1996) Light and scan electron microscopic analysis of Cyclops syndrome: etiopathogenic hypothesis and technical solutions. Knee Surg Sports Traumatol Arthrosc 4:194–199

    Article  CAS  PubMed  Google Scholar 

  11. Delincé P, Krallis P, Descamps PY et al (1998) Different aspects of the cyclops lesion following anterior cruciate ligament reconstruction: a multifactorial etiopathogenesis. Arthroscopy 14(8):869–876

    Article  PubMed  Google Scholar 

  12. Dienst M, Schneider G, Altmeyer K et al (2007) Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 127(4):253–260

    Article  PubMed  Google Scholar 

  13. Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34:703–707

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fung DT, Hendrix RW, Koh JL et al (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460:210–218

    PubMed  Google Scholar 

  15. Gohil S, Falconer TM, Breidahl W (2013) Serial MRI and clinical assessment of cyclops lesions. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2480-5

    PubMed  Google Scholar 

  16. Hamada M, Shino K, Horibe S et al (2001) Single- versus bi-socket anterior cruciate ligament reconstruction using autogenous multiple-stranded hamstring tendons with endo button femoral fixation: a prospective study. Arthroscopy 17(8):801–807

    Article  CAS  PubMed  Google Scholar 

  17. Hamada M, Shino K, Horibe S et al (2005) Changes in cross-sectional area of hamstring anterior cruciate ligament grafts as a function of time following transplantation. Arthroscopy 21:917–922

    Article  PubMed  Google Scholar 

  18. Iriuchishima T, Ryu K, Yorifuji H et al (2013) Commonly used ACL autograft areas do not correlate with the size of the ACL footprint or the femoral condyle. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2595-8

    Google Scholar 

  19. Jackson DW, Schaefer RK (1990) Cyclops syndrome: loss of extension following intra-articular anterior cruciate ligament reconstruction. Arthroscopy 6:171–178

    Article  CAS  PubMed  Google Scholar 

  20. Kawakami Y, Hiranaka T, Matsumoto T et al (2012) The accuracy of bone tunnel position using fluoroscopic-based navigation system in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1503–1510

    Article  PubMed  Google Scholar 

  21. Kondo E, Yasuda K, Azuma H et al (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36(9):1675–1687

    Article  PubMed  Google Scholar 

  22. Kropf EJ, Shen W, van Eck CF et al (2013) ACL–PCL and intercondylar notch impingement: magnetic resonance imaging of native and double-bundle ACL-reconstructed knees. Knee Surg Sports Traumatol Arthrosc 21:720–725

    Article  PubMed  Google Scholar 

  23. LaPrade RF, Burnett QM II (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22:198–203

    Article  CAS  PubMed  Google Scholar 

  24. Marzo JM, Bowen MK, Warren RF et al (1992) Intraarticular fibrous nodule as a cause of loss of extension following anterior cruciate ligament reconstruction. Arthroscopy 8:10–18

    Article  CAS  PubMed  Google Scholar 

  25. Muellner T, Kdolsky R, Groschmidt K et al (1999) Cyclops and cyclopoid formation after anterior cruciate ligament reconstruction: clinical and histomorphological differences. Knee Surg Sports Traumatol Arthrosc 7:284–289

    Article  CAS  PubMed  Google Scholar 

  26. Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25(1):69–72

    Article  CAS  PubMed  Google Scholar 

  27. Rosenberg TD, Graf B (1994) Techniques for ACL reconstruction with multi-trac drill guide. Acufex Microsurgical, Mansfield

    Google Scholar 

  28. Shelbourne KD, Davis TJ, Klootwyk TE et al (1998) The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med 26:402–408

    CAS  PubMed  Google Scholar 

  29. Siebold R, Dehler C, Ellert T (2008) Prospective randomized comparison of double-bundle versus single-bundle anterior cruciate ligament reconstruction. Arthroscopy 24:137–145

    Article  PubMed  Google Scholar 

  30. Simon RA, Everhart JS, Nagaraja HN et al (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43(9):1702–1707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Sonnery-Cottet B, Lavoie F, Ogassawara R et al (2010) Clinical and operative characteristics of cyclops syndrome after double-bundle anterior cruciate ligament reconstruction. Arthroscopy 26:1483–1488

    Article  PubMed  Google Scholar 

  32. Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21:535–539

    Article  CAS  PubMed  Google Scholar 

  33. Souryal TO, Moore HA, Evans JP (1988) Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 16(5):449–454

    Article  CAS  PubMed  Google Scholar 

  34. Taketomi S, Nakagawa T, Takeda H et al (2011) Anatomical placement of double femoral tunnels in anterior cruciate ligament reconstruction: anteromedial tunnel first or posterolateral tunnel first? Knee Surg Sports Traumatol Arthrosc 19:424–431

    Article  PubMed  Google Scholar 

  35. Tonin M, Saciri V, Veselko M et al (2001) Progressive loss of knee extension after injury. Cyclops syndrome due to a lesion of anterior cruciate ligament. Am J Sports Med 29:545–549

    CAS  PubMed  Google Scholar 

  36. Tsukada H, Ishibashi Y, Tsuda E et al (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13:122–129

    Article  PubMed  Google Scholar 

  37. Uhorchak JM, Scoville CR, Williams GN et al (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831–842

    PubMed  Google Scholar 

  38. Vaidya SV, Ranawat CS, Aroojis A et al (2000) Anthropometric measurements to design total knee prostheses for the Indian population. J Arthroplasty 15(1):79–85

    Article  CAS  PubMed  Google Scholar 

  39. Van Dijck RA, Saris DB, Willems JW et al (2008) Additional surgery after anterior cruciate ligament reconstruction: can we improve technical aspects of the initial procedure? Arthroscopy 24(1):88–95

    Article  PubMed  Google Scholar 

  40. Van Eck CF, Martins CA, Lorenz SG et al (2010) Assessment of correlation between knee notch width index and the three-dimensional notch volume. Knee Surg Sports Traumatol Arthrosc 18(9):1239–1244

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wang J, Ao Y (2009) Analysis of different kinds of cyclops lesions with or without extension loss. Arthroscopy 25:626–631

    Article  PubMed  Google Scholar 

  42. Yasuda K, Kondo E, Ichiyama H et al (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251

    Article  PubMed  Google Scholar 

  43. Zeng C, Gao SG, Wei J et al (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(4):804–815

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Aki Yoshida, Ms. Reina Tanaka, and Ms. Emi Matsumoto for their technical cooperation. This work was supported by the grant from Japan Society for the Promotion of Science (No. 24791546, T.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Furumatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, M., Furumatsu, T., Miyazawa, S. et al. Intercondylar notch size influences cyclops formation after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23, 1092–1099 (2015). https://doi.org/10.1007/s00167-014-2891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-2891-y

Keywords

Navigation