Skip to main content
Log in

Effect of VEGF-A165 addition on the integration of a cortical allograft in a tibial segmental defect in rabbits

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Long-bone segmental defects caused by infection, fracture, or tumour are a challenge for orthopaedic surgeons. Structural allografts are sometimes used in their treatment but their poor biological characteristics are a liability. The objective of this study was to determine whether the addition of recombinant vascular endothelial growth factor-A (VEGF) to a structural allograft improved its integration into a rabbit tibial segmental defect in a non-union model.

Methods

Tibial segmental defects were filled with heat sterilized allogenic tubular tibiae sections and then stabilized with a screw plate. In the VEGF treatment group (n = 6 tibiae), 2 μg of VEGF added to a 50 μl matrigel solution was inserted into the allograft cavity. In the control group (n = 6 tibiae), only matrigel was added. After 12 weeks, macroscopic and microscopic analysis, radiographs, and computerized micro-tomography (micro-CT) were performed. If allograft consolidation was present, a torsional resistance analysis was performed.

Results

Addition of VEGF to the allograft decreased the rate of osteosynthesis failure compared with the control group (1/6 vs. 5/6, p = 0.08), increased trabecular continuity evaluated by micro-CT in the bone–allograft interphases (8/12 vs. 2/12, p = 0.036) and histological trabecular continuity (7/12 vs. 0/12, p = 0.0046). Full consolidation was observed in three tibiae of the VEGF group and one in the control group (differences not significant); however, torsional resistance showed no significant differences (n.s.).

Conclusion

Addition of VEGF to a structural allograph inserted into a rabbit tibial segmental defect increased allograft integration rate. Further research in this direction might help clinicians in dealing with large bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beamer B, Hettrich C, Lane J (2009) Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J 6(1):85–94

    Article  PubMed Central  PubMed  Google Scholar 

  2. Breitbart EA, Meade S, Azad V, Yeh S, Al-Zube L, Lee YS, Benevenia J, Arinzeh TL, Lin SS (2010) Mesenchymal stem cells accelerate bone allograft incorporation in the presence of diabetes mellitus. J Orthop Res 28(7):942–949

    PubMed  Google Scholar 

  3. Brownlow HC, Simpson AH (2000) Metabolic activity of a new atrophic nonunion model in rabbits. J Orthop Res 18(3):438–442

    Article  CAS  PubMed  Google Scholar 

  4. Bullens PH, Minderhoud NM, de Waal Malefijt MC, Veth RP, Buma P, Schreuder HW (2009) Survival of massive allografts in segmental oncological bone defect reconstructions. Int Orthop 33(3):757–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Daines BK, Dennis DA (2013) Management of bone defects in revision total knee arthroplasty. Instr Course Lect 62:341–348

    PubMed  Google Scholar 

  6. Dedania J, Borzio R, Paglia D, Breitbart EA, Mitchell A, Vaidya S, Wey A, Mehta S, Benevenia J, O’Connor JP, Lin SS (2011) Role of local insulin augmentation upon allograft incorporation in a rat femoral defect model. J Orthop Res 29(1):92–99

    Article  PubMed  Google Scholar 

  7. Devescovi V, Leonardi E, Ciapetti G, Cenni E (2008) Growth factors in bone repair. Chir Organi Mov 92(3):161–168

    Article  PubMed  Google Scholar 

  8. Eckardt H, Bundgaard KG, Christensen KS, Lind M, Hansen ES, Hvid I (2003) Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J Orthop Res 21(2):335–340

    Article  CAS  PubMed  Google Scholar 

  9. Eckardt H, Ding M, Lind M, Hansen ES, Christensen KS, Hvid I (2005) Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. J Bone Joint Surg Br 87(10):1434–1438

    Article  CAS  PubMed  Google Scholar 

  10. Evans CH (2010) Gene therapy for bone healing. Expert Rev Mol Med 12:e18

    Article  PubMed Central  PubMed  Google Scholar 

  11. Finn HA, Nicholas RW, Webb JE (1990) Skeletal reconstruction with allograft segments following bone tumor resection. Contemp Orthop 21(5):455–471

    CAS  PubMed  Google Scholar 

  12. Fuchs B, Ossendorf C, Leerapun T, Sim FH (2008) Intercalary segmental reconstruction after bone tumor resection. Eur J Surg Oncol 34(12):1271–1276

    Article  CAS  PubMed  Google Scholar 

  13. Gale NW, Thurston G, Davis S, Wiegand SJ, Holash J, Rudge JS, Yancopoulos GD (2002) Complementary and coordinated roles of the VEGFs and angiopoietins during normal and pathologic vascular formation. Cold Spring Harb Symp Quant Biol 67:267–273

    Article  CAS  PubMed  Google Scholar 

  14. Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, Simank HG, Richter W (2005) Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 20(11):2028–2035

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein SA (2006) Tissue engineering solutions for traumatic bone loss. J Am Acad Orthop Surg 14(10 Spec No):S152–S156. doi:http://www.ncbi.nlm.nih.gov/pubmed/17003189

    PubMed  Google Scholar 

  16. Kaipel M, Schutzenberger S, Schultz A, Ferguson J, Slezak P, Morton TJ, Van Griensven M, Redl H (2012) BMP-2 but not VEGF or PDGF in fibrin matrix supports bone healing in a delayed-union rat model. J Orthop Res 30(10):1563–1569

    Article  CAS  PubMed  Google Scholar 

  17. Kanczler JM, Ginty PJ, Barry JJ, Clarke NM, Howdle SM, Shakesheff KM, Oreffo RO (2008) The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials 29(12):1892–1900

    Article  CAS  PubMed  Google Scholar 

  18. Kawaguchi H, Nakamura K, Tabata Y, Ikada Y, Aoyama I, Anzai J, Nakamura T, Hiyama Y, Tamura M (2001) Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J Clin Endocrinol Metab 86(2):875–880

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Nauth A, Li C, Qamirani E, Atesok K, Schemitsch EH (2012) Expression of VEGF gene isoforms in a rat segmental bone defect model treated with EPCs. J Orthop Trauma 26(12):689–692

    Article  PubMed  Google Scholar 

  20. Li R, Stewart DJ, von Schroeder HP, Mackinnon ES, Schemitsch EH (2009) Effect of cell-based VEGF gene therapy on healing of a segmental bone defect. J Orthop Res 27(1):8–14

    Article  CAS  PubMed  Google Scholar 

  21. Lu H, Pei G, Zhao P, Liang S, Jin D, Jiang S (2010) Cyclosporine-impregnated allograft bone sterilized with low-temperature plasma. J Tissue Eng Regen Med 4(8):638–651

    Article  CAS  PubMed  Google Scholar 

  22. McKee MD (2006) Management of segmental bony defects: the role of osteoconductive orthobiologics. J Am Acad Orthop Surg 14(10 Spec No):S163–S167

    PubMed  Google Scholar 

  23. Muscolo DL, Ayerza MA, Aponte-Tinao LA (2006) Massive allograft use in orthopedic oncology. Orthop Clin North Am 37(1):65–74

    Article  PubMed  Google Scholar 

  24. Ochman S, Frey S, Raschke MJ, Deventer JN, Meffert RH (2011) Local application of VEGF compensates callus deficiency after acute soft tissue trauma–results using a limb-shortening distraction procedure in rabbit tibia. J Orthop Res 29(7):1093–1098

    Article  CAS  PubMed  Google Scholar 

  25. Pape HW, TG. (2010) Autologous techniques to fill bone defects for acute fractures and nonunions, an issue of orthopedic clinics, vol 1. The clinics: orthopedics, 1 edn. Saunders

  26. Pneumaticos SG, Triantafyllopoulos GK, Basdra EK, Papavassiliou AG (2010) Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med 14(11):2561–2569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Puzas JE, Houck J, Bukata SV (2006) Accelerated fracture healing. J Am Acad Orthop Surg 14(10 Spec No):S145–S151

    PubMed  Google Scholar 

  28. Ripamonti U, Ferretti C, Teare J, Blann L (2009) Transforming growth factor-beta isoforms and the induction of bone formation: implications for reconstructive craniofacial surgery. J Craniofac Surg 20(5):1544–1555

    Article  PubMed  Google Scholar 

  29. Shen FH, Werner BC, Liang H, Shang H, Yang N, Li X, Shimer AL, Balian G, Katz AJ (2013) Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation. Spine J 13(1):32–43

    Article  PubMed  Google Scholar 

  30. Yang P, Wang C, Shi Z, Huang X, Dang X, Li X, Lin SF, Wang K (2010) rhVEGF 165 delivered in a porous beta-tricalcium phosphate scaffold accelerates bridging of critical-sized defects in rabbit radii. J Biomed Mater Res A 92(2):626–640

    PubMed  Google Scholar 

  31. Yasuda H, Yano K, Wakitani S, Matsumoto T, Nakamura H, Takaoka K (2012) Repair of critical long bone defects using frozen bone allografts coated with an rhBMP-2-retaining paste. J Orthop Sci 17(3):299–307

    Article  CAS  PubMed  Google Scholar 

  32. Zou XH, Cai HX, Yin Z, Chen X, Jiang YZ, Hu H, Ouyang HW (2009) A novel strategy incorporated the power of mesenchymal stem cells to allografts for segmental bone tissue engineering. Cell Transplant 18(4):433–441

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been funded by grants provided by the Association Internationale pourl′Ostéosynthèse Dynamique and the Sociedad Española de Cirugía Ortopédica y Traumatología.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Ruiz-Ibán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Ibán, M.A., Gonzalez-Lizán, F., Diaz-Heredia, J. et al. Effect of VEGF-A165 addition on the integration of a cortical allograft in a tibial segmental defect in rabbits. Knee Surg Sports Traumatol Arthrosc 23, 1393–1400 (2015). https://doi.org/10.1007/s00167-013-2785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2785-4

Keywords

Navigation