Skip to main content
Log in

Agreement between radiological and computer navigation measurement of lower limb alignment

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Accurate and reproducible measurements of limb alignment are necessary for planning, performing and evaluation of reconstructive knee surgery. Aim of this study was the comparison of the alignment measured on long-leg standing radiographs with the intraoperative data from a navigation system.

Methods

The records of 135 consecutive patients who received computer-assisted TKA were examined. Technical quality of the long-leg radiographs (LLRs) was classified good, acceptable or poor according to the rotation of the leg. The difference between radiographic and navigation measurements of leg alignment was assessed.

Results

Preoperative LLRs were rated as good 56.3 % (71.1 % postoperatively), acceptable in 37.0 % (20.0 % postoperatively) and poor in 6.7 % (8.9 % postoperatively). The median difference between radiographic and navigation measurements increased with reduced quality of the LLR [good 1.5° (range 0.0°–9.9°), acceptable 2.5° (range 0.0°–15.0°), poor 4.5° (range 0.2°–9.5°)], but not with greater deformity. Median difference between both measurements in good radiographs was 1.7° (range 0.0°–9.9°) preoperatively and 1.2° (range 0.0°–7.0°) postoperatively.

Conclusion

Difference between radiographic and navigation measurements of lower limb alignment is low if the LLR are obtained in neutral rotation. Larger differences between both measurements can occur even under these ideal conditions, and it is still unclear which measurement is closer to reality. Therefore, even if a navigation system is used during surgery, long-leg standing radiographs should currently not be abandoned.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babazadeh S, Dowsey MM, Bingham RJ et al (2013) The long leg radiograph is a reliable method of assessing alignment when compared to computer-assisted navigation and computer tomography. Knee 20:242–249

    Article  PubMed  Google Scholar 

  2. Bathis H, Perlick L, Tingart M et al (2004) Radiological results of image-based and non-image-based computer-assisted total knee arthroplasty. Int Orthop 28:87–90

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Bathis H, Shafizadeh S, Paffrath T et al (2006) Are computer assisted total knee replacements more accurately placed? A meta-analysis of comparative studies. Orthopade 35:1056–1065

    Article  PubMed  CAS  Google Scholar 

  4. Brouwer RW, Jakma TS, Brouwer KH, Verhaar JA (2007) Pitfalls in determining knee alignment: a radiographic cadaver study. J Knee Surg 20:210–215

    PubMed  CAS  Google Scholar 

  5. Clemens U, Miehlke RK (2003) Experience using the latest OrthoPilot TKA software: a comparative study. Surg Technol Int 11:265–273

    PubMed  Google Scholar 

  6. Cooke TD, Scudamore RA, Bryant JT et al (1991) A quantitative approach to radiography of the lower limb. Principles and applications. J Bone Joint Surg Br 73:715–720

    PubMed  CAS  Google Scholar 

  7. Cooke TD, Sled EA, Scudamore RA (2007) Frontal plane knee alignment: a call for standardized measurement. J Rheumatol 34:1796–1801

    PubMed  Google Scholar 

  8. Coventry MB, Ilstrup DM, Wallrichs SL (1993) Proximal tibial osteotomy. A critical long-term study of eighty-seven cases. J Bone Joint Surg Am 75:196–201

    PubMed  CAS  Google Scholar 

  9. Delp SL, Stulberg SD, Davies B, Picard F, Leitner F (1998) Computer assisted knee replacement. Clin Orthop Relat Res 354:49–56

    Article  PubMed  Google Scholar 

  10. Fujisawa Y, Masuhara K, Shiomi S (1979) The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. Orthop Clin North Am 10:585–608

    PubMed  CAS  Google Scholar 

  11. Gosse F, Brack C, Gotte H et al (1997) Robot-assisted knee endoprosthesis. Orthopade 26:258–266

    PubMed  CAS  Google Scholar 

  12. Hauschild O, Konstantinidis L, Baumann T et al (2010) Correlation of radiographic and navigated measurements of TKA limb alignment: a matter of time? Knee Surg Sports Traumatol Arthrosc 18:1317–1322

    Article  PubMed  Google Scholar 

  13. Hauser R (2000) Computer-aided 3D-navigation systems-a plea for an error model. HNO 48:71–74

    Article  PubMed  CAS  Google Scholar 

  14. Henckel J, Richards R, Lozhkin K et al (2006) Very low-dose computed tomography for planning and outcome measurement in knee replacement. The imperial knee protocol. J Bone Joint Surg Br 88:1513–1518

    Article  PubMed  CAS  Google Scholar 

  15. Hinterwimmer S, Graichen H, Vogl TJ, Abolmaali N (2008) An MRI-based technique for assessment of lower extremity deformities-reproducibility, accuracy, and clinical application. Eur Radiol 18:1497–1505

    Article  PubMed  Google Scholar 

  16. Hunt MA, Fowler PJ, Birmingham TB, Jenkyn TR, Giffin JR (2006) Foot rotational effects on radiographic measures of lower limb alignment. Can J Surg 49:401–406

    PubMed  PubMed Central  Google Scholar 

  17. Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73:709–714

    PubMed  CAS  Google Scholar 

  18. Jenny JY, Boeri C (2001) Computer-assisted implantation of total knee prostheses: a case-control comparative study with classical instrumentation. Comput Aided Surg 6:217–220

    Article  PubMed  CAS  Google Scholar 

  19. Jenny JY, Clemens U, Kohler S et al (2005) Consistency of implantation of a total knee arthroplasty with a non-image-based navigation system: a case-control study of 235 cases compared with 235 conventionally implanted prostheses. J Arthroplasty 20:832–839

    Article  PubMed  Google Scholar 

  20. Kendoff D, Board TN, Citak M et al (2008) Navigated lower limb axis measurements: influence of mechanical weight-bearing simulation. J Orthop Res 26:553–561

    Article  PubMed  Google Scholar 

  21. Kohn D, Rupp S (2000) Knee endoprosthesis: aspects of surgical techniques. Orthopade 29:697–707

    Article  PubMed  CAS  Google Scholar 

  22. Krackow KA, Pepe CL, Galloway EJ (1990) A mathematical analysis of the effect of flexion and rotation on apparent varus/valgus alignment at the knee. Orthopedics 13:861–868

    PubMed  CAS  Google Scholar 

  23. Langenbach MR, Dohle J, Zirngibl H (2002) Determination of the axis after total endoprosthesis of the knee: functional X-ray photography as golden standard. Z Orthop Ihre Grenzgeb 140:32–36

    Article  PubMed  CAS  Google Scholar 

  24. Loer I, Plitz W (2003) Tibial malalignment of mobile-bearing prostheses–a simulator study. Orthopade 32:296–304

    Article  PubMed  CAS  Google Scholar 

  25. Lutzner J, Gross AF, Gunther KP, Kirschner S (2009) Reliability of limb alignment measurement for high tibial osteotomy with a navigation system. Eur J Med Res 14:447–450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Lutzner J, Krummenauer F, Wolf C, Gunther KP, Kirschner S (2008) Computer-assisted and conventional total knee replacement: a comparative, prospective, randomised study with radiological and CT evaluation. J Bone Joint Surg Br 90:1039–1044

    Article  PubMed  CAS  Google Scholar 

  27. Matthews LS, Goldstein SA, Malvitz TA, Katz BP, Kaufer H (1988) Proximal tibial osteotomy. Factors that influence the duration of satisfactory function. Clin Orthop Relat Res 229:193–200

    PubMed  Google Scholar 

  28. McGrory JE, Trousdale RT, Pagnano MW, Nigbur M (2002) Preoperative hip to ankle radiographs in total knee arthroplasty. Clin Orthop Relat Res 404:196–202

    Article  PubMed  Google Scholar 

  29. Moreland JR, Bassett LW, Hanker GJ (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am 69:745–749

    PubMed  CAS  Google Scholar 

  30. Oberst M, Bertsch C, Lahm A, Wuerstlin S, Holz U (2006) Regression and correlation analysis of preoperative versus intraoperative assessment of axes during navigated total knee arthroplasty. Comput Aided Surg 11:87–91

    Article  PubMed  Google Scholar 

  31. Pang HN, Yeo SJ, Chong HC et al (2011) Computer-assisted gap balancing technique improves outcome in total knee arthroplasty, compared with conventional measured resection technique. Knee Surg Sports Traumatol Arthrosc 19:1496–1503

    Article  PubMed  Google Scholar 

  32. Pitto RP, Graydon AJ, Bradley L et al (2006) Accuracy of a computer-assisted navigation system for total knee replacement. J Bone Joint Surg Br 88:601–605

    Article  PubMed  CAS  Google Scholar 

  33. Rauh MA, Boyle J, Mihalko WM et al (2007) Reliability of measuring long-standing lower extremity radiographs. Orthopedics 30:299–303

    PubMed  Google Scholar 

  34. Reising K, Strohm PC, Hauschild O et al (2013) Computer-assisted navigation for the intraoperative assessment of lower limb alignment in high tibial osteotomy can avoid outliers compared with the conventional technique. Knee Surg Sports Traumatol Arthrosc 21:181–188

    Article  PubMed  Google Scholar 

  35. Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156

    PubMed  Google Scholar 

  36. Ritter MA, Herbst SA, Keating EM, Faris PM, Meding JB (1994) Long-term survival analysis of a posterior cruciate-retaining total condylar total knee arthroplasty. Clin Orthop Relat Res 309:136–145

    PubMed  Google Scholar 

  37. Robinson M, Eckhoff DG, Reinig KD, Bagur MM, Bach JM (2006) Variability of landmark identification in total knee arthroplasty. Clin Orthop Relat Res 442:57–62

    Article  PubMed  Google Scholar 

  38. Rosenberger RE, Hoser C, Quirbach S et al (2008) Improved accuracy of component alignment with the implementation of image-free navigation in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 16:249–257

    Article  PubMed  Google Scholar 

  39. Sharma L, Song J, Felson DT et al (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195

    Article  PubMed  CAS  Google Scholar 

  40. Siu D, Cooke TD, Broekhoven LD et al (1991) A standardized technique for lower limb radiography. Practice, applications, and error analysis. Invest Radiol 26:71–77

    Article  PubMed  CAS  Google Scholar 

  41. Specogna AV, Birmingham TB, Hunt MA et al (2007) Radiographic measures of knee alignment in patients with varus gonarthrosis: effect of weightbearing status and associations with dynamic joint load. Am J Sports Med 35:65–70

    Article  PubMed  Google Scholar 

  42. Sprenger TR, Doerzbacher JF (2003) Tibial osteotomy for the treatment of varus gonarthrosis. Survival and failure analysis to twenty-two years. J Bone Joint Surg Am 85-A:469–474

    PubMed  Google Scholar 

  43. Stulberg SD, Loan P, Sarin V (2002) Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. J Bone Joint Surg Am 84-A(Suppl 2):90–98

    PubMed  Google Scholar 

  44. Willcox NM, Clarke JV, Smith BR, Deakin AH, Deep K (2012) A comparison of radiological and computer navigation measurements of lower limb coronal alignment before and after total knee replacement. J Bone Joint Surg Br 94:1234–1240

    Article  PubMed  CAS  Google Scholar 

  45. Wright JG, Treble N, Feinstein AR (1991) Measurement of lower limb alignment using long radiographs. J Bone Joint Surg Br 73:721–723

    PubMed  CAS  Google Scholar 

  46. Yaffe MA, Koo SS, Stulberg SD (2008) Radiographic and navigation measurements of TKA limb alignment do not correlate. Clin Orthop Relat Res 466:2736–2744

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yau WP, Leung A, Chiu KY, Tang WM, Ng TP (2005) Intraobserver errors in obtaining visually selected anatomic landmarks during registration process in nonimage-based navigation-assisted total knee arthroplasty: a cadaveric experiment. J Arthroplasty 20:591–601

    Article  PubMed  CAS  Google Scholar 

  48. Yau WP, Leung A, Liu KG et al (2007) Interobserver and intra-observer errors in obtaining visually selected anatomical landmarks during registration process in non-image-based navigation-assisted total knee arthroplasty. J Arthroplasty 22:1150–1161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Heike Voigt for her support in data management and analysis.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Dexel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dexel, J., Kirschner, S., Günther, KP. et al. Agreement between radiological and computer navigation measurement of lower limb alignment. Knee Surg Sports Traumatol Arthrosc 22, 2721–2727 (2014). https://doi.org/10.1007/s00167-013-2599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2599-4

Keywords

Navigation