Skip to main content
Log in

Do tibiofemoral contact point and posterior condylar offset influence outcome and range of motion in a mobile-bearing total knee arthroplasty?

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The posterior condylar offset (PCO) and the tibiofemoral contact point (CP) have been reported as important factors that can influence range of motion and clinical outcome after total knee arthroplasty. A mobile-bearing knee implant with an anterior posterior gliding insert would in theory be more sensitive for changes in PCO and CP. For this reason, we analysed the PCO and CP and the relation with outcome and range of motion in 132 patients from a prospectively documented cohort in this type of implant.

Methods

The prosthesis used was a posterior cruciate retaining AP gliding mobile-bearing total knee replacement (SAL II Sulzer Medica, Switzerland). In 132 knees, the pre- and postoperative PCO and postoperative CP were evaluated. Measurements were made on X-rays of the knee taken in approximately 90° of flexion and with less than 3-mm rotation of the femur condyles. The outcome parameters, range of motion (ROM) and the knee society score (KSS), for each knee were determined preoperatively and at 5-year follow-up.

Results

The mean KSS improved from 91 to 161 at 5-year follow-up (p < 0.001) and the mean ROM from 102 to 108 (p < 0.05). The mean PCO difference (postoperative PCO–preoperative PCO) was—0.05 mm (SD 2.15). The CP was on average 53.9 % (SD 5.5 %). ROM was different between the 3 PCO groups (p = 0.05): patients with 3 or more mm decrease in PCO had the best postoperative ROM (p = 0.047). There was no statistical difference between the postoperative ROM between patients with a stable PCO and those with an increased PCO. There was no correlation between the difference in PCO and the difference in ROM; R Pearson = −0.056. There was no difference in postoperative ROM or postoperative total KSS between CP <60 % and CP >60 %: p = 0.22, p = 0.99, for ROM and KSS, respectively. Scatter plots showed uniform clouds of values: increase or decrease in PCO and CP had no significant influence on ROM or KSS.

Conclusion

The hypotheses that a stable PCO and a more natural CP increase postoperative ROM and improve clinical outcome could not be confirmed. On the contrary, a decreased PCO seemed to improve knee flexion. Furthermore, a relationship between PCO and CP could not be found.

Level of evidence

Prospective cohort study, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138

    Article  PubMed  Google Scholar 

  2. Banks SA, Harman MK, Bellemans J, Hodge WA (2003) Making sense of knee arthroplasty kinematics: news you can use. J Bone Joint Surg Am 85-A(Suppl 4):64–72

    PubMed  Google Scholar 

  3. Bauer T, Biau D, Colmar M, Poux X, Hardy P, Lortat-Jacob A (2010) Influence of posterior condylar offset on knee flexion after cruciate-sacrificing mobile-bearing total knee replacement: a prospective analysis of 410 consecutive cases. Knee 17:375–380

    Article  CAS  PubMed  Google Scholar 

  4. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53

    Article  CAS  PubMed  Google Scholar 

  5. Bellemans J, Robijns F, Duerinckx J, Banks S, Vandenneucker H (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13:193–196

    Article  CAS  PubMed  Google Scholar 

  6. Bertin KC, Komistek RD, Dennis DA, Hoff WA, Anderson DT, Langer T (2002) In vivo determination of posterior femoral rollback for subjects having a NexGen posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 17:1040–1048

    Article  PubMed  Google Scholar 

  7. de Jong RJ, Heesterbeek PJ, Wymenga AB (2010) A new measurement technique for the tibiofemoral contact point in normal knees and knees with TKR. Knee Surg Sports Traumatol Arthrosc 18:388–393

    Article  PubMed  Google Scholar 

  8. Delport HP, Banks SA, De SJ, Bellemans J (2006) A kinematic comparison of fixed- and mobile-bearing knee replacements. J Bone Joint Surg Br 88:1016–1021

    Article  CAS  PubMed  Google Scholar 

  9. Diks MJ, Anderson PG, Janssen JC, van Stralen G, Wymenga AB (2008) The Self-Aligning knee prosthesis: clinical and radiological outcome and survival analysis at 5-year follow up. Knee Surg Sports Traumatol Arthrosc 16:128–134

    Article  CAS  PubMed  Google Scholar 

  10. Feyen H, Van ON, Bellemans J (2012) Partial resection of the PCL insertion site during tibial preparation in cruciate-retaining TKA. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-1997-3

  11. Freeman MA, Pinskerova V (2003) The movement of the knee studied by magnetic resonance imaging. Clin Orthop Relat Res 410:35–43

    Article  PubMed  Google Scholar 

  12. Hazaki S, Yokoyama Y, Inoue H (2001) A radiographic analysis of anterior-posterior translation in total knee arthroplasty. J Orthop Sci 6:390–396

    Article  CAS  PubMed  Google Scholar 

  13. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14

    PubMed  Google Scholar 

  14. Ishii Y, Noguchi H, Takeda M, Sato J, Toyabe S (2011) Prediction of range of motion 2 years after mobile-bearing total knee arthroplasty: PCL-retaining versus PCL-sacrificing. Knee Surg Sports Traumatol Arthrosc 19:2002–2008

    Article  PubMed  Google Scholar 

  15. Iwaki H, Pinskerova V, Freeman MA (2001) Femoral roll-back is obtainable and desirable in total knee arthroplasty: the case against. In: Laskin R (ed) Controversies in total knee replacement. Oxford university press, Oxford, pp 106–118

    Google Scholar 

  16. Jeffcote B, Nicholls R, Schirm A, Kuster MS (2007) The variation in medial and lateral collateral ligament strain and tibiofemoral forces following changes in the flexion and extension gaps in total knee replacement: a laboratory experiment using cadaver knees. J Bone Joint Surg Br 89:1528–1533

    Article  CAS  PubMed  Google Scholar 

  17. Kim H, Pelker RR, Gibson DH, Irving JF, Lynch JK (1997) Rollback in posterior cruciate ligament-retaining total knee arthroplasty. A radiographic analysis. J Arthroplasty 12:553–561

    Article  CAS  PubMed  Google Scholar 

  18. Kim YH, Choi Y, Kim JS (2009) Range of motion of standard and high-flexion posterior cruciate-retaining total knee prostheses a prospective randomized study. J Bone Joint Surg Am 91:1874–1881

    Article  PubMed  Google Scholar 

  19. Kim YH, Sohn KS, Kim JS (2005) Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 87:1470–1475

    Article  PubMed  Google Scholar 

  20. Komistek RD, Dennis DA, Mahfouz M (2003) In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res 410:69–81

    Article  PubMed  Google Scholar 

  21. Li G, Suggs J, Hanson G, Durbhakula S, Johnson T, Freiberg A (2006) Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty. J Bone Joint Surg Am 88:395–402

    Article  PubMed  Google Scholar 

  22. Malviya A, Lingard EA, Weir DJ, Deehan DJ (2009) Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17:491–498

    Article  PubMed  Google Scholar 

  23. Misra AN, Hussain MR, Fiddian NJ, Newton G (2003) The role of the posterior cruciate ligament in total knee replacement. J Bone Joint Surg Br 85:389–392

    Article  CAS  PubMed  Google Scholar 

  24. Onodera T, Majima T, Nishiike O, Kasahara Y, Takahashi D (2012) Posterior femoral condylar offset after total knee replacement in the risk of knee flexion contracture. J Arthroplasty. doi:10.1016/j.arth.2012.07.029

    Google Scholar 

  25. Shi X, Shen B, Kang P, Yang J, Zhou Z, Pei F (2012) The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-2058-7

  26. Stiehl JB, Dennis DA, Komistek RD, Crane HS (1999) In vivo determination of condylar lift-off and screw-home in a mobile-bearing total knee arthroplasty. J Arthroplasty 14:293–299

    Article  CAS  PubMed  Google Scholar 

  27. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87:646–655

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. P. Geijsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geijsen, G.J.P., Heesterbeek, P.J.C., van Stralen, G. et al. Do tibiofemoral contact point and posterior condylar offset influence outcome and range of motion in a mobile-bearing total knee arthroplasty?. Knee Surg Sports Traumatol Arthrosc 22, 550–555 (2014). https://doi.org/10.1007/s00167-013-2525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2525-9

Keywords

Navigation