Skip to main content
Log in

In vitro analysis of peri-articular soft tissues passive constraining effect on hip kinematics and joint stability

  • Hip
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Aim of the study is to assess the contribution of peri-articular soft tissues to hip joint kinematics and their influence on hip stability.

Methods

Four hemi-corpse specimens (3 males, average age 72 years) were studied using a custom navigation system. Hip kinematics (femoral head motion relative to the acetabulum and joint range of motion) were evaluated with the hip manually positioned in 36 different positions with (I) soft tissues intact, (II) after removal of the skin and muscles and (III) after partial capsulectomy. Each position was repeated 3 times in each state.

Results

Excellent interclass correlation for each test was determined (ICC range, 0.84–0.96). Femoral head anatomical centre displacement relative to the acetabulum occurred in all 3 planes, even with all the soft tissue intact (average, 3.3 ± 2.8 mm lateral translation; 1.4 ± 1.8 mm posterior translation and 0.3 ± 1.5 mm distally). These translations increased as more soft tissue was removed, except medial–lateral displacement, with an average 4.6 ± 2.9 mm lateral translation, 0.7 ± 1.3 mm posterior translation and 1.5 ± 1.9 mm distal translation when partial capsulectomy was performed. Range of motion increased in all 3 planes with increasing removal of the soft tissues.

Conclusions

This study showed that femoral head anatomical centre displacement within the acetabulum occurs and increases with increasing removal of peri-articular soft tissues, confirming their influence on hip stability. Hip kinematics was also influenced by peri-articular soft tissues; specifically range of motion increases with increasing removal of those tissues. From clinicians’ point of view, they have therefore to consider the influence of their surgeries on peri-articular soft tissues, since excessive translations may promote hip arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bland JM, Altman DG (1996) Measurement error and correlation coefficients. BMJ 313:41–42

    Article  PubMed  CAS  Google Scholar 

  2. Byrd JWT, Jones KS (2009) Arthroscopic femoroplasty in the management of cam-type femoroacetabular impingement. Clin Orthop Relat Res 467:739–746

    Article  PubMed  Google Scholar 

  3. Crawford MJ, Dy CJ, Alexander JW, Thompson M, Schroder SJ, Vega CE, Patel RV, Miller AR, McCarthy JC, Lowe WR, Noble PC (2007) The 2007 Frank Stinchfield Award. The biomechanics of the hip labrum and the stability of the hip. Clin Orthop Relat Res 465:16–22

    PubMed  Google Scholar 

  4. Crowninshield RD, Johnston RC, Brand RA, Pedersen DR (1983) Pathologic ligamentous constraint of the hip. Clin Orthop Relat Res 181:291–297

    PubMed  Google Scholar 

  5. Crowninshield RD, Johnston RC, Andrews JG, Brand RA (1978) A biomechanical investigation of the human hip. J Biomech 11:75–85

    Article  PubMed  CAS  Google Scholar 

  6. Daniel M, Iglic A, Kralj-Iglic V (2005) The shape of acetabular cartilage optimizes hip contact stress distribution. J Anat 207:85–91

    Article  PubMed  Google Scholar 

  7. Davis KE, Ritter MA, Berend ME, Meding JB (2007) The importance of range of motion after total hip arthroplasty. Clin Orthop Relat Res 465:180–184

    PubMed  Google Scholar 

  8. Dy CJ, Thompson MT, Crawford MJ, Alexander JW, McCarthy JC, Noble PC (2008) Tensile strain in the anterior part of the acetabular labrum during provocative maneuvering of the normal hip. J Bone Joint Surg Am 90(A):1464–1472

    Article  PubMed  Google Scholar 

  9. Ferguson SJ, Bryant JT, Ganz R, Ito K (2003) An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech 36:171–178

    Article  PubMed  CAS  Google Scholar 

  10. Ferguson SJ, Bryant JT, Ito K (2001) The material properties of the bovine acetabular labrum. J Orthop Res 19:887–896

    Article  PubMed  CAS  Google Scholar 

  11. Ferguson SJ, Bryant JT, Ganz R, Ito K (2000) The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. J Biomech 33:953–960

    Article  PubMed  CAS  Google Scholar 

  12. Fuss FK, Bacher A (1991) New aspects of the morphology and function of the human hip joint ligaments. Am J Anat 192:1–13

    Article  PubMed  CAS  Google Scholar 

  13. Gamage SSHU, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35:87–93

    Article  PubMed  Google Scholar 

  14. Gilles B, Christophe FK, Magnenat-Thalmann N, Becker CD, Duc SR, Menetrey J, Hoffmeyer P (2009) MRI-based assessment of hip joint translations. J Biomech 42(9):1201–1205

    Article  PubMed  Google Scholar 

  15. Hewitt JD, Glisson RR, Guilak F, Vail TP (2002) The mechanical properties of the human hip capsule ligaments. J Arthroplasty 17:82–89

    Article  PubMed  Google Scholar 

  16. Hewitt J, Guilak F, Glisson R, Vail TP (2001) Regional material properties of the human hip joint capsule ligaments. J Orthop Res 19:359–364

    Article  PubMed  CAS  Google Scholar 

  17. Kelly BT, Weiland DE, Schenker ML, Philippon MJ (2005) Arthroscopic labral repair in the hip: surgical technique and review of the literature. Arthroscopy 21:1496–1504

    Article  PubMed  Google Scholar 

  18. Konrath GA, Hamel AJ, Olson SA, Bay B, Sharkey NA (1998) The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip. J Bone Joint Surg Am 80:1781–1788

    PubMed  CAS  Google Scholar 

  19. Larson CM, Guanche CA, Kelly BT, Clohisy JC, Ranawat AS (2009) Advanced techniques in hip arthroscopy. Instr Course Lect 58:423–436

    PubMed  Google Scholar 

  20. Martin HD, Savage A, Braly BA, Palmer IJ, Beall DP, Kelly B (2008) The function of the hip capsular ligaments: a quantitative report. Arthroscopy 24:188–195

    Article  PubMed  Google Scholar 

  21. Martelli S, Lopomo N, Bignozzi S, Zaffagnini S, Visani A (2007) Validation of a new protocol for navigated intraoperative assessment of knee kinematics. Comput Biol Med 37:872–878

    Article  PubMed  Google Scholar 

  22. Morris JM (1971) Biomechanical aspects of the hip joint. Orthop Clin North Am 2(1):33–54 (review)

    PubMed  CAS  Google Scholar 

  23. Murray DW (1993) The definition and measurement of acetabular orientation. J Bone Joint Surg Br 75:228–232

    PubMed  CAS  Google Scholar 

  24. Nordin M, Frankel VH (1980) Biomechanics of the Hip. In: Frankel VH (ed) Basic biomechanics of the skeletal system. Lea & Febiger, Philadelphia, pp 149–177

    Google Scholar 

  25. Rydell N (1972) Biomechanics of the hip joint. Clin Orthop Rel Res 92:5–15

    Google Scholar 

  26. Siston RA, Delp SL (2006) Evaluation of a new algorithm to determine the hip joint center. J Biomech 39:125–130

    Article  PubMed  Google Scholar 

  27. Stewart KJ, Edmonds-Wilson RH, Brand RA, Brown TD (2002) Spatial distribution of hip capsule structural and material properties. J Biomech 35:1491–1498

    Article  PubMed  Google Scholar 

  28. Stewart KJ, Pedersen DR, Callaghan JJ, Brown TD (2004) Implementing capsule representation in a total hip dislocation finite element model. Iowa Orthop J 24:1–8

    PubMed  Google Scholar 

  29. Takechi H, Nagashima H, Ito S (1982) Intra-articular pressure of the hip joint outside and inside the limbus. Nippon Seikeigeka Gakkai Zasshi 56:529–536

    PubMed  CAS  Google Scholar 

  30. Vrahas MS, Brand RA, Brown TD, Andrews JG (1990) Contribution of passive tissues to the intersegmental moments at the hip. J Biomech 23:357–362

    Article  PubMed  CAS  Google Scholar 

  31. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35:543–548

    Article  PubMed  Google Scholar 

  32. Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc 14:811–816

    Article  PubMed  CAS  Google Scholar 

  33. Ziegert AJ, Blankenbaker DG, De Smet AA, Keene JS, Shinki K, Fine JP (2009) Comparison of standard hip MR arthrographic imaging planes and sequences for detection of arthroscopically proven labral tear. AJR Am J Roentgenol 192:1397–1400

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Lopomo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safran, M.R., Lopomo, N., Zaffagnini, S. et al. In vitro analysis of peri-articular soft tissues passive constraining effect on hip kinematics and joint stability. Knee Surg Sports Traumatol Arthrosc 21, 1655–1663 (2013). https://doi.org/10.1007/s00167-012-2091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2091-6

Keywords

Navigation