Skip to main content
Log in

Biomechanical evaluation contribution of the acetabular labrum to hip stability

  • Hip
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Knowledge of the effect of hip pathologies on hip biomechanics is important to the understanding of the development of osteoarthritis, and the contribution of the labrum to hip joint stability has had limited study. The purpose of this study was to evaluate the effect of labral injury to stability of the femoral head in the acetabular socket.

Methods

Ten cadaver hip specimens were tested using a robotic system under four different loading conditions: axial loading (80 N) along the femoral axis and axial loading (80 N) combined with either anterior, posterior or lateral loading (60 N). The hip states were examined were intact, with a 1.5 cm capsulotomy and with a 1 cm resection of the anterosuperior labrum.

Results

At 30° of flexion, under axial load, the displacement of the hip with capsulotomy and labral resection (9.6 ± 2.5 mm) was significantly larger then the hip with capsulotomy alone (5.6 ± 4.1 mm, p = 0.005) and the intact hip (5.2 ± 3.8 mm, p = 0.005). Also, at 30° of flexion, the displacement under combined axial and anterior/posterior load was increased with capsulotomy and labral resection.

Conclusion

The acetabular labrum provides stability to the hip joint in response to a distraction force and combined distraction and translation forces. One centimetre of labral resection caused significant displacement (“wobbling” effect) of the femoral head within the acetabulum with normal range of motion. Successful labral repair could be crucial for restoration of the hip biomechanics and prevention of coxarthrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beck M, Kalhor M, Leunig M, Ganz R (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 87:1012–1018

    Article  CAS  PubMed  Google Scholar 

  2. Beckmann J, Luring C, Tingart M, Anders S, Grifka J, Kock FX (2009) Cup positioning in THA: current status and pitfalls. A systematic evaluation of the literature. Arch Orthop Trauma Surg 129:863–872

    Article  CAS  PubMed  Google Scholar 

  3. Byrd JW, Jones KS (2009) Hip arthroscopy for labral pathology: prospective analysis with 10-year follow-up. Arthroscopy 25:365–368

    Article  PubMed  Google Scholar 

  4. Crawford MJ, Dy CJ, Alexander JW, Thompson M, Schroder SJ, Vega CE, Patel RV, McCarthy JC, Lowe WR, Noble PC (2007) The 2007 Frank Stinchfield Award. The biomechanics of the hip labrum and the stability of the hip. Clin Orthop Relat Res 465:16–22

    PubMed  Google Scholar 

  5. DiGioia AM, Hafez MA, Jaramaz B, Levison TJ, Moody JE (2006) Functional pelvic orientation measured from lateral standing and sitting radiographs. Clin Orthop Relat Res 453:272–276

    Article  PubMed  Google Scholar 

  6. Espinosa N, Rothenfluh DA, Beck M, Ganz R, Leunig M (2006) Treatment of femoro-acetabular impingement: preliminary results of labral refixation. J Bone Joint Surg Am 88:925–935

    Article  PubMed  Google Scholar 

  7. Feeley BT, Powell JW, Muller MS, Barnes RP, Warren RF, Kelly BT (2008) Hip injuries and labral tears in the national football league. Am J Sports Med 36:2187–2195

    Article  PubMed  Google Scholar 

  8. Ferguson SJ, Bryant JT, Ganz R, Ito K (2000) The acetabular labrum seal: a poroelastic finite element model. Clin Biomech 15:463–468

    Article  CAS  Google Scholar 

  9. Ferguson SJ, Bryant JT, Ganz R, Ito K (2000) The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. J Biomech 33:953–960

    Article  CAS  PubMed  Google Scholar 

  10. Ferguson SJ, Bryant JT, Ganz R, Ito K (2003) An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech 36:171–178

    Article  CAS  PubMed  Google Scholar 

  11. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89

    Article  PubMed  Google Scholar 

  12. Harner CD, Janaushek MA, Kanamori A, Yagi M, Vogrin TM, Woo SL (2000) Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 28:144–151

    CAS  PubMed  Google Scholar 

  13. Harris JD, Slikker W, Gupta AK et al (2013) Routine complete capsular closure during hip arthroscopy. Arthrosc Tech 2:89–94

    Article  Google Scholar 

  14. Henak C, Ellis B, Harris M, Anderson A, Peters C, Weiss J (2011) Role of the acetabular labrum in load support across the hip joint. J Biomech 44(12):2201–2206

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ito H, Song Y, Lindsey DP, Safran M, Giori N (2009) The proximal hip joint capsule and the zona orbicularis contribute to hip joint stability in distraction. J Orthop Research 27:989–995

    Article  Google Scholar 

  16. Klaue K, Durnin CW, Ganz R (1991) The acetabular rim syndrome. A clinical presentation of dysplasia of the hip. J Bone Joint Surg Br 73:423–429

    CAS  PubMed  Google Scholar 

  17. Kohnlein W, Ganz R, Impellizzeri FM, Leunig M (2009) Acetabular morphology: implications for joint-preserving surgery. Clin Orthop Relat Res 467:682–691

    Article  PubMed  PubMed Central  Google Scholar 

  18. Komistek RD, Dennis DA, Ochoa JA, Haas BD, Hammill C (2002) In vivo comparison of hip separation after metal-on-metal or metal-on-polyethylene total hip arthroplasty. J Bone Joint Surg Am 84:1836–1841

    PubMed  Google Scholar 

  19. Krych AJ, Thompson M, Larson CM, Byrd JW et al (2012) Is posterior hip instability associated with cam and pincer deformity? Clin Orthop Relat Res 470:3390–3397

    Article  PubMed  PubMed Central  Google Scholar 

  20. Larson CM, Giveans MR (2009) Arthroscopic debridement versus refixation of the acetabular labrum associated with femoroacetabular impingement. Arthroscopy 25:369–376

    Article  PubMed  Google Scholar 

  21. Lertwanich P, Martins CAQ, Kato Y, Ingham SJH, Kramer S, Linde-Rosen M, Smolinski P, Fu F (2010) Contribution of the meniscofemoral ligament as a restraint to the posterior tibial translation in a porcine knee. Knee Surg Sports Traumatol Arthrosc 18:1277–1281

    Article  PubMed  Google Scholar 

  22. Lombardi AV, Mallory TH, Dennis DA, Komistek RD, Fada RA, Northcut FJ (2000) An in vivo determination of total hip arthroplasty pistoning during activity. J Arthroplasty 15:702–709

    Article  PubMed  Google Scholar 

  23. Martin HD, Savage A, Braly BA, Palmer IJ, Beall DP, Kelly B (2008) The function of the hip capsular ligaments: a quantitative report. Arthroscopy 24:188–195

    Article  PubMed  Google Scholar 

  24. McCarthy JC, Noble PC, Schuck MR, Wright J, Lee J (2001) The Otto E. Aufranc Award: The role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res 393:25–37

    Article  PubMed  Google Scholar 

  25. Narvani AA, Tsiridis E, Kendall S, Chaudhuri R, Thomas P (2003) A preliminary report on prevalence of acetabular labrum tears in sports patients with groin pain. Knee Surg Sports Traumatol Arthrosc 11:403–408

    Article  CAS  PubMed  Google Scholar 

  26. Nepple JJ, Philippon MJ, Campbell KJ et al (2014) The hip fluid seal—Part II: the effect of an acetabular tear, repair, resection, and reconstruction on hip stability to distraction. Knee Surg Sports Traumatol Arthrosc 22(4):730–736

    Article  PubMed  Google Scholar 

  27. Nishihara S, Sugano N, Nishii T, Ohzono K, Yoshikawa H (2003) Measurements of pelvic flexion angle using three-dimensional computed tomography. Clin Orthop Relat Res 140–51, 123: 283–288

  28. Petersen W, Petersen F, Tillmann B (2003) Structure and vascularization of the acetabular labrum with regard to the pathogenesis and healing of labral lesions. Arch Orthop Trauma Surg 123:283–288

    Article  PubMed  Google Scholar 

  29. Philippon MJ, Schenker ML (2005) Athletic hip injuries and capsular laxity. Oper Tech Orthop 15:261–266

    Article  Google Scholar 

  30. Philippon MJ, Kuppersmith DA, Wolff AB, Briggs KK (2009) Arthroscopic findings following traumatic hip dislocation in 14 professional athletes. Arthroscopy 25:169–174

    Article  PubMed  Google Scholar 

  31. Philippon MJ, Briggs KK, Hay CJ, Kuppersmith DA, Dewing CB, Huang MJ (2010) Arthroscopic labral reconstruction in the hip using iliotibial band autograft: technique and early outcomes. Arthroscopy 26:750–756

    Article  PubMed  Google Scholar 

  32. Rudy TW, Livesay GA, Woo SL, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29:1357–1360

    Article  CAS  PubMed  Google Scholar 

  33. Safran MR, Giordano G, Lindsay DP, Gold GE, Rosenberg J, Zaffagnini S, Giori NJ (2011) Strains across the acetabular labrum during hip motion: a cadaveric model. Am J Sports Med 39:92–102

    Article  Google Scholar 

  34. Selders RM, Tan V, Hunt J, Katz M, Winiarsky R, Fitzgerald RH (2001) Anatomy, histological features and vascularity of the adult acetabular labrum. Clin Orthop Rel Res 382:232–240

    Article  Google Scholar 

  35. Shindle MK, Voos JE, Nho SJ, Heyworth BE, Kelly BT (2008) Arthroscopic management of labral tears in the hip. J Bone Joint Surg Am 90(Suppl 4):2–19

    Article  PubMed  Google Scholar 

  36. Smith MV, Panchal HB, Thiele RA, Sekiya JK (2011) Effect of acetabular labrum tears on hip stability and labral strain in a joint compression model. Am J Sports Med 39:103–110

    Article  Google Scholar 

  37. Song Y, Ito H, Kourtis L, Safran K, Carter D, Gion N (2012) Articular cartilage friction increases in hip joints after removal of the acetabular labrum. J Biomech 45(3):524–530

    Article  PubMed  Google Scholar 

  38. Takechi H, Nagashima H, Ito S (1982) Intra-articular pressure of the hip joint outside and inside the limbus. J Jpn Orthop Assoc 56:529–536

    CAS  Google Scholar 

  39. Tan V, Seldes RM, Katz MA, Freedhand AM, Klimkiewicz JJ, Fitzgerald RH Jr (2001) Contribution of acetabular labrum to articulating surface area and femoral head coverage in adult hip joints: an anatomic study in cadavera. Am J Orthop 30:809–812

    CAS  PubMed  Google Scholar 

  40. Tayton E (2007) Femoral anteversion: a necessary angle or an evolutionary vestige? J Bone Joint Surg Br 89:1283–1288

    Article  CAS  PubMed  Google Scholar 

  41. Terayama K, Takei T, Nakada K (1980) Joint space of the human knee and hip joint under a static load. Eng Med 9:67–74

    Article  Google Scholar 

  42. Woo SL, Fisher MB (2009) Evaluation of knee stability with use of a robotic system. J Bone Joint Surg Am 91(Suppl 1):78–84

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declared no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Plakseychuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lertwanich, P., Plakseychuk, A., Kramer, S. et al. Biomechanical evaluation contribution of the acetabular labrum to hip stability. Knee Surg Sports Traumatol Arthrosc 24, 2338–2345 (2016). https://doi.org/10.1007/s00167-015-3555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3555-2

Keywords

Navigation