Skip to main content
Log in

Biomechanical techniques to evaluate tibial rotation. A systematic review

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This article systematically reviewed the biomechanical techniques to quantify tibial rotation, for an overview of how to choose a suitable technique for specific clinical application.

Methods

A systematic search was conducted and finally 110 articles were included in this study. The articles were categorized by the conditions of how the knee was examined: external load application, physical examination and dynamic task.

Results

The results showed that two-thirds of the included studies measured tibial rotation under external load application, of which over 80% of the experiments employed a cadaveric model. The common techniques used included direct displacement measurement, motion sensor, optical tracking system and universal force moment sensor. Intra-operative navigation system was used to document tibial rotation when the knee was examined by clinical tests. For dynamic assessment of knee rotational stability, motion analysis with skin reflective markers was frequently used although this technique is less accurate due to the skin movement when compared with radiographic measurement.

Conclusion

This study reports various biomechanical measurement techniques to quantify tibial rotation in the literatures. To choose a suitable measurement technique for a specific clinical application, it is suggested to quantify the effectiveness of a new designed surgical technique by using a cadaveric model before applying to living human subjects for intra-operative evaluation or long-time functional stability assessment. Attention should also be paid on the study’s purpose, whether to employ a cadaveric model and the way of stress applied to the knee.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL (2000) Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 18:109–115

    Article  PubMed  CAS  Google Scholar 

  2. Andersen HN, Dyhre-Poulsen P (1997) The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 5:145–149

    Article  PubMed  CAS  Google Scholar 

  3. Anderson CJ, Westerhaus BD, Pietrini SD, Ziegler CG, Wijdicks CA, Johansen S, Engebretsen L, Laprade RF (2010) Kinematic impact of anteromedial and posterolateral bundle graft fixation angles on double-bundle anterior cruciate ligament reconstructions. Am J Sports Med 38:1575–1583

    Article  PubMed  Google Scholar 

  4. Anderson K, Wojtys EM, Loubert PV, Miller RE (1992) A biomechanical evaluation of taping and bracing in reducing knee joint translation and rotation. Am J Sports Med 20:416–421

    Article  PubMed  CAS  Google Scholar 

  5. Andriacchi TP, Alexander EJ (2000) Studies of human locomotion: past, present and future. J Biomech 33:1217–1224

    Article  PubMed  CAS  Google Scholar 

  6. Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J (1998) A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng 120:743–749

    Article  PubMed  CAS  Google Scholar 

  7. Andriacchi TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32:447–457

    Article  PubMed  Google Scholar 

  8. Apsingi S, Nguyen T, Bull AM, Unwin A, Deehan DJ, Amis AA (2009) A comparison of modified Larson and ‘anatomic’ posterolateral corner reconstructions in knees with combined PCL and posterolateral corner deficiency. Knee Surg Sports Traumatol Arthrosc 17:305–312

    Article  PubMed  Google Scholar 

  9. Apsingi S, Nguyen T, Bull AM, Unwin A, Deehan DJ, Amis AA (2008) Control of laxity in knees with combined posterior cruciate ligament and posterolateral corner deficiency: comparison of single-bundle versus double-bundle posterior cruciate ligament reconstruction combined with modified Larson posterolateral corner reconstruction. Am J Sports Med 36:487–494

    Article  PubMed  Google Scholar 

  10. Apsingi S, Nguyen T, Bull AM, Unwin A, Deehan DJ, Amis AA (2008) The role of PCL reconstruction in knees with combined PCL and posterolateral corner deficiency. Knee Surg Sports Traumatol Arthrosc 16:104–111

    Article  PubMed  CAS  Google Scholar 

  11. Baxter MP (1988) Assessment of normal pediatric knee ligament laxity using the genucom. J Pediatr Orthop 8:546–550

    Article  PubMed  CAS  Google Scholar 

  12. Brady MF, Bradley MP, Fleming BC, Fadale PD, Hulstyn MJ, Banerjee R (2007) Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction. Am J Sports Med 35:395–403

    Article  PubMed  Google Scholar 

  13. Brandsson S, Karlsson J, Eriksson BI, Karrholm J (2001) Kinematics after tear in the anterior cruciate ligament: dynamic bilateral radiostereometric studies in 11 patients. Acta Orthop Scand 72:372–378

    Article  PubMed  CAS  Google Scholar 

  14. Brandsson S, Karlsson J, Sward L, Kartus J, Eriksson BI, Karrholm J (2002) Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med 30:361–367

    PubMed  Google Scholar 

  15. Brophy RH, Voos JE, Shannon FJ, Granchi CC, Wickiewicz TL, Warren RF, Pearle AD (2008) Changes in the length of virtual anterior cruciate ligament fibers during stability testing: a comparison of conventional single-bundle reconstruction and native anterior cruciate ligament. Am J Sports Med 36:2196–2203

    Article  PubMed  Google Scholar 

  16. Bull AM, Andersen HN, Basso O, Targett J, Amis AA (1999) Incidence and mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res 99:219–231

    Google Scholar 

  17. Chouliaras V, Ristanis S, Moraiti C, Stergiou N, Georgoulis AD (2007) Effectiveness of reconstruction of the anterior cruciate ligament with quadrupled hamstrings and bone-patellar tendon-bone autografts: an in vivo study comparing tibial internal-external rotation. Am J Sports Med 35:189–196

    Article  PubMed  Google Scholar 

  18. Chouliaras V, Ristanis S, Moraiti C, Tzimas V, Stergiou N, Georgoulis AD (2009) Anterior cruciate ligament reconstruction with a quadrupled hamstrings tendon autograft does not restore tibial rotation to normative levels during landing from a jump and subsequent pivoting. J Sports Med Phys Fit 49:64–70

    CAS  Google Scholar 

  19. Chun YM, Kim SJ, Kim HS (2008) Evaluation of the mechanical properties of posterolateral structures and supporting posterolateral instability of the knee. J Orthop Res 26:1371–1376

    Article  PubMed  Google Scholar 

  20. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

    Article  PubMed  Google Scholar 

  21. Coobs BR, Wijdicks CA, Armitage BM, Spiridonov SI, Westerhaus BD, Johansen S, Engebretsen L, Laprade RF (2010) An in vitro analysis of an anatomical medial knee reconstruction. Am J Sports Med 38:339–347

    Article  PubMed  Google Scholar 

  22. Csintalan RP, Ehsan A, McGarry MH, Fithian DF, Lee TQ (2006) Biomechanical and anatomical effects of an external rotational torque applied to the knee: a cadaveric study. Am J Sports Med 34:1623–1629

    Article  PubMed  Google Scholar 

  23. Czerniecki JM, Lippert F, Olerud JE (1988) A biomechanical evaluation of tibiofemoral rotation in anterior cruciate deficient knees during walking and running. Am J Sports Med 16:327–331

    Article  PubMed  CAS  Google Scholar 

  24. Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34:1240–1246

    Article  PubMed  Google Scholar 

  25. Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Traumatol Surg 129:353–358

    Article  Google Scholar 

  26. Draganich LF, Reider B, Ling M, Samuelson M (1990) An in vitro study of an intraarticular and extraarticular reconstruction in the anterior cruciate ligament deficient knee. Am J Sports Med 18:262–266

    Article  PubMed  CAS  Google Scholar 

  27. Draganich LF, Reider B, Miller PR (1989) An in vitro study of the Muller anterolateral femorotibial ligament tenodesis in the anterior cruciate ligament deficient knee. Am J Sports Med 17:357–362

    Article  PubMed  CAS  Google Scholar 

  28. Dyrby CO, Andriacchi TP (2004) Secondary motions of the knee during weight bearing and non-weight bearing activities. J Orthop Res 22:794–800

    Article  PubMed  Google Scholar 

  29. Engebretsen L, Lew WD, Lewis JL, Hunter RE, Benum P (1990) Anterolateral rotatory instability of the knee. Cadaver study of extraarticular patellar-tendon transposition. Acta Orthop Scand 61:225–230

    Article  PubMed  CAS  Google Scholar 

  30. Feeley BT, Muller MS, Allen AA, Granchi CC, Pearle AD (2009) Biomechanical comparison of medial collateral ligament reconstructions using computer-assisted navigation. Am J Sports Med 37:1123–1130

    Article  PubMed  Google Scholar 

  31. Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, Crenna P, Leardini A (2008) Quantitative comparison of five current protocols in gait analysis. Gait Posture 28:207–216

    Article  PubMed  Google Scholar 

  32. Ferrari DA, Wilson DR, Hayes WC (2003) The effect of release of the popliteus and quadriceps force on rotation of the knee. Clin Orthop Relat Res 412:225–233

    Article  PubMed  Google Scholar 

  33. Fornalski S, McGarry MH, Csintalan RP, Fithian DC, Lee TQ (2008) Biomechanical and anatomical assessment after knee hyperextension injury. Am J Sports Med 36:80–84

    Article  PubMed  Google Scholar 

  34. Fu FH, Zelle BA (2007) Rotational instability of the knee: editorial comment. Clin Orthop Relat Res 454:3–4

    Article  Google Scholar 

  35. Gaasbeek RD, Welsing RT, Verdonschot N, Rijnberg WJ, van Loon CJ, van Kampen A (2005) Accuracy and initial stability of open- and closed-wedge high tibial osteotomy: a cadaveric RSA study. Knee Surg Sports Traumatol Arthrosc 13:689–694

    Article  PubMed  Google Scholar 

  36. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31:75–79

    PubMed  Google Scholar 

  37. Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 454:89–94

    Article  PubMed  Google Scholar 

  38. Gollehon DL, Torzilli PA, Warren RF (1987) The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J Bone Joint Surg Am 69:233–242

    PubMed  CAS  Google Scholar 

  39. Griffith CJ, LaPrade RF, Johansen S, Armitage B, Wijdicks C, Engebretsen L (2009) Medial knee injury: part 1, static function of the individual components of the main medial knee structures. Am J Sports Med 37:1762–1770

    Article  PubMed  Google Scholar 

  40. Gupte CM, Bull AM, Thomas RD, Amis AA (2003) The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. J Bone Joint Surg Br 85:765–773

    PubMed  Google Scholar 

  41. Hagemeister N, Duval N, Yahia L, Krudwig W, Witzel U, de Guise JA (2002) Comparison of two methods for reconstruction of the posterior cruciate ligament using a computer based method: quantitative evaluation of laxity, three-dimensional kinematics and ligament deformation measurement in cadaver knees. Knee 9:291–299

    Article  PubMed  CAS  Google Scholar 

  42. Hagemeister N, Duval N, Yahia L, Krudwig W, Witzel U, de Guise JA (2003) Computer based method for the three-dimensional kinematic analysis of combined posterior cruciate ligament and postero-lateral complex reconstructions on cadaver knees. Knee 10:249–256

    Article  PubMed  CAS  Google Scholar 

  43. Herbort M, Lenschow S, Fu FH, Petersen W, Zantop T (2010) ACL mismatch reconstructions: influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics. Knee Surg Sports Traumatol Arthrosc 18:1551–1558

    Article  PubMed  Google Scholar 

  44. Ho EP, Lam MH, Chung MM, Fong DT, Law BK, Yung PS, Chan WY, Chan KM (2010) Comparison of 2 surgical techniques for reconstructing posterolateral corner of the knee: a cadaveric study evaluated by navigation system. Arthroscopy 27:89–96

    PubMed  Google Scholar 

  45. Hofbauer M, Valentin P, Kdolsky R, Ostermann RC, Graf A, Figl M, Aldrian S (2010) Rotational and translational laxity after computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18:1201–1207

    Article  PubMed  CAS  Google Scholar 

  46. Hofmann AA, Wyatt RW, Bourne MH, Daniels AU (1984) Knee stability in orthotic knee braces. Am J Sports Med 12:371–374

    Article  PubMed  CAS  Google Scholar 

  47. Hoher J, Harner CD, Vogrin TM, Baek GH, Carlin GJ, Woo SL (1998) In situ forces in the posterolateral structures of the knee under posterior tibial loading in the intact and posterior cruciate ligament-deficient knee. J Orthop Res 16:675–681

    Article  PubMed  CAS  Google Scholar 

  48. Houck J, Yack HJ (2001) Giving way event during a combined stepping and crossover cutting task in an individual with anterior cruciate ligament deficiency. J Orthop Sports Phys Ther 31:481–489

    PubMed  CAS  Google Scholar 

  49. Hsu WH, Fisk JA, Yamamoto Y, Debski RE, Woo SL (2006) Differences in torsional joint stiffness of the knee between genders: a human cadaveric study. Am J Sports Med 34:765–770

    Article  PubMed  Google Scholar 

  50. Isberg J, Faxen E, Laxdal G, Eriksson BI, Karrholm J, Karlsson J (2011) Will early reconstruction prevent abnormal kinematics after ACL injury? Two-year follow-up using dynamic radiostereometry in 14 patients operated with hamstring autografts. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1399-y

  51. Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S (2008) Intraoperative biomechanical evaluation of anatomic anterior cruciate ligament reconstruction using a navigation system: comparison of hamstring tendon and bone-patellar tendon-bone graft. Am J Sports Med 36:1903–1912

    Article  PubMed  Google Scholar 

  52. Ishibashi Y, Tsuda E, Tazawa K, Sato H, Toh S (2005) Intraoperative evaluation of the anatomical double-bundle anterior cruciate ligament reconstruction with the OrthoPilot navigation system. Orthop suppl 28:s1277–s1282

    Google Scholar 

  53. Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 25:488–495

    Article  PubMed  Google Scholar 

  54. Johannsen HV, Lind T, Jakobsen BW, Kroner K (1989) Exercise-induced knee joint laxity in distance runners. Br J Sports Med 23:165–168

    Article  PubMed  CAS  Google Scholar 

  55. Jonsson H, Karrholm J (1990) Brace effects on the unstable knee in 21 cases. A roentgen stereophotogrammetric comparison of three designs. Acta Orthop Scand 61:313–318

    Article  PubMed  CAS  Google Scholar 

  56. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18:394–398

    Article  PubMed  Google Scholar 

  57. Kanaya A, Ochi M, Deie M, Adachi N, Nishimori M, Nakamae A (2009) Intraoperative evaluation of anteroposterior and rotational stabilities in anterior cruciate ligament reconstruction: lower femoral tunnel placed single-bundle versus double-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 17:907–913

    Article  PubMed  Google Scholar 

  58. Kaneda Y, Moriya H, Takahashi K, Shimada Y, Tamaki T (1997) Experimental study on external tibial rotation of the knee. Am J Sports Med 25:796–800

    Article  PubMed  CAS  Google Scholar 

  59. Karrholm J, Elmqvist LG, Selvik G, Hansson LI (1989) Chronic anterolateral instability of the knee. A roentgen stereophotogrammetric evaluation. Am J Sports Med 17:555–563

    Article  PubMed  CAS  Google Scholar 

  60. Kendoff D, Meller R, Citak M, Pearle A, Marquardt S, Krettek C, Hufner T (2007) Navigation in ACL reconstruction—comparison with conventional measurement tools. Technol Health Care 15:221–230

    PubMed  CAS  Google Scholar 

  61. Kim SJ, Kim HS, Moon HK, Chang WH, Kim SG, Chun YM (2010) A biomechanical comparison of 3 reconstruction techniques for posterolateral instability of the knee in a cadaveric model. Arthroscopy 26:335–341

    Article  PubMed  Google Scholar 

  62. Knutzen KM, Bates BT, Schot P, Hamill J (1987) A biomechanical analysis of two functional knee braces. Med Sci Sports Exerc 19:303–309

    PubMed  CAS  Google Scholar 

  63. Kondo E, Merican AM, Yasuda K, Amis AA (2010) Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: anatomic double bundle versus single bundle. Am J Sports Med 38:1349–1358

    Article  PubMed  Google Scholar 

  64. Krudwig WK, Witzel U, Ullrich K (2002) Posterolateral aspect and stability of the knee joint. II. Posterolateral instability and effect of isolated and combined posterolateral reconstruction on knee stability: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 10:91–95

    Article  PubMed  Google Scholar 

  65. Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med 34:269–280

    Article  PubMed  Google Scholar 

  66. Lane JG, Irby SE, Kaufman K, Rangger C, Daniel DM (1994) The anterior cruciate ligament in controlling axial rotation. An evaluation of its effect. Am J Sports Med 22:289–293

    Article  PubMed  CAS  Google Scholar 

  67. Laprade RF, Engebretsen L, Johansen S, Wentorf FA, Kurtenbach C (2008) The effect of a proximal tibial medial opening wedge osteotomy on posterolateral knee instability: a biomechanical study. Am J Sports Med 36:956–960

    Article  PubMed  Google Scholar 

  68. LaPrade RF, Johansen S, Wentorf FA, Engebretsen L, Esterberg JL, Tso A (2004) An analysis of an anatomical posterolateral knee reconstruction: an in vitro biomechanical study and development of a surgical technique. Am J Sports Med 32:1405–1414

    Article  PubMed  Google Scholar 

  69. Li G, Gill TJ, DeFrate LE, Zayontz S, Glatt V, Zarins B (2002) Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads—an in vitro experimental study. J Orthop Res 20:887–892

    Article  PubMed  Google Scholar 

  70. Li G, Papannagari R, Li M, Bingham J, Nha KW, Allred D, Gill T (2008) Effect of posterior cruciate ligament deficiency on in vivo translation and rotation of the knee during weight bearing flexion. Am J Sports Med 36:474–479

    Article  PubMed  Google Scholar 

  71. Lie DT, Bull AM, Amis AA (2007) Persistence of the mini pivot shift after anatomically placed anterior cruciate ligament reconstruction. Clin Orthop Relat Res 457:203–209

    PubMed  Google Scholar 

  72. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy 19:297–304

    Article  PubMed  Google Scholar 

  73. Lubowitz JH, Bernardini BJ, Reid JB (2008) Current concepts review: comprehensive physical examination for instability of the knee. Am J Sports Med 36:577–594

    Article  PubMed  Google Scholar 

  74. Lundberg M, Messner K (1994) Decrease in valgus stiffness after medial knee ligament injury. A 4-year clinical and mechanical follow-up study in 38 patients. Acta Orthop Scand 65:615–619

    Article  PubMed  CAS  Google Scholar 

  75. Majewski M, Susanne H, Klaus S (2006) Epidemiology of athletic knee injuries: A 10-year study. Knee 13:184–188

    Article  PubMed  CAS  Google Scholar 

  76. Mannel H, Marin F, Claes L, Durselen L (2004) Anterior cruciate ligament rupture translates the axes of motion within the knee. Clin Biomech 19:130–135

    Article  CAS  Google Scholar 

  77. Markolf KL, Jackson SR, McAllister DR (2010) A comparison of 11 o’clock versus oblique femoral tunnels in the anterior cruciate ligament-reconstructed knee: knee kinematics during a simulated pivot test. Am J Sports Med 38:912–917

    Article  PubMed  Google Scholar 

  78. Martelli S, Zaffagnini S, Bignozzi S, Lopomo N, Marcacci M (2007) Description and validation of a navigation system for intra-operative evaluation of knee laxity. Comput Aided Surg 12:181–188

    PubMed  Google Scholar 

  79. Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br 72:816–821

    PubMed  CAS  Google Scholar 

  80. McCarthy M, Camarda L, Wijdicks CA, Johansen S, Engebretsen L, Laprade RF (2010) Anatomic posterolateral knee reconstructions require a popliteofibular ligament reconstruction through a tibial tunnel. Am J Sports Med 38:1674–1681

    Article  PubMed  Google Scholar 

  81. Miura K, Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S (2010) Intraoperative comparison of knee laxity between anterior cruciate ligament-reconstructed knee and contralateral stable knee using navigation system. Arthroscopy 26:1203–1211

    Article  PubMed  Google Scholar 

  82. Morin PM, Reindl R, Harvey EJ, Beckman L, Steffen T (2008) Fibular fixation as an adjuvant to tibial intramedullary nailing in the treatment of combined distal third tibia and fibula fractures: a biomechanical investigation. Can J Surg 51:45–50

    PubMed  Google Scholar 

  83. Mueller CA, Eingartner C, Schreitmueller E, Rupp S, Goldhahn J, Schuler F, Weise K, Pfister U, Suedkamp NP (2005) Primary stability of various forms of osteosynthesis in the treatment of fractures of the proximal tibia. J Bone Joint Surg Br 87:426–432

    Article  PubMed  CAS  Google Scholar 

  84. Musahl V, Voos JE, O’Loughlin PF, Choi D, Stueber V, Kendoff D, Pearle AD (2010) Comparing stability of different single- and double-bundle anterior cruciate ligament reconstruction techniques: a cadaveric study using navigation. Arthroscopy suppl 26:s41–s48

    Google Scholar 

  85. Myklebust G, Bahr R (2005) Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med 39:127–131

    Article  PubMed  CAS  Google Scholar 

  86. Nakamae A, Ochi M, Deie M, Adachi N, Kanaya A, Nishimori M, Nakasa T (2010) Biomechanical function of anterior cruciate ligament remnants: how long do they contribute to knee stability after injury in patients with complete tears? Arthroscopy 26:1577–1585

    Article  PubMed  Google Scholar 

  87. Nau T, Chevalier Y, Hagemeister N, Deguise JA, Duval N (2005) Comparison of 2 surgical techniques of posterolateral corner reconstruction of the knee. Am J Sports Med 33:1838–1845

    Article  PubMed  Google Scholar 

  88. Nau T, Chevalier Y, Hagemeister N, Duval N, de Guise JA (2005) 3D kinematic in vitro comparison of posterolateral corner reconstruction techniques in a combined injury model. Knee Surg Sports Traumatol Arthrosc 13:572–580

    Article  PubMed  Google Scholar 

  89. Papannagari R, Gill TJ, Defrate LE, Moses JM, Petruska AJ, Li G (2006) In vivo kinematics of the knee after anterior cruciate ligament reconstruction: a clinical and functional evaluation. Am J Sports Med 34:2006–2012

    Article  PubMed  Google Scholar 

  90. Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res 26:937–944

    Article  PubMed  Google Scholar 

  91. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38:1968–1978

    Article  PubMed  Google Scholar 

  92. Plaweski S, Cazal J, Rosell P, Merloz P (2006) Anterior cruciate ligament reconstruction using navigation: a comparative study on 60 patients. Am J Sports Med 34:542–552

    Article  PubMed  Google Scholar 

  93. Ristanis S, Giakas G, Papageorgiou CD, Moraiti T, Stergiou N, Georgoulis AD (2003) The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surg Sports Traumatol Arthrosc 11:360–365

    Article  PubMed  CAS  Google Scholar 

  94. Ristanis S, Stergiou N, Patras K, Tsepis E, Moraiti C, Georgoulis AD (2006) Follow-up evaluation 2 years after ACL reconstruction with bone-patellar tendon-bone graft shows that excessive tibial rotation persists. Clin J Sports Med 16:111–116

    Article  Google Scholar 

  95. Ristanis S, Stergiou N, Patras K, Vasiliadis HS, Giakas G, Georgoulis AD (2005) Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy 21:1323–1329

    Article  PubMed  Google Scholar 

  96. Ristanis S, Stergiou N, Siarava E, Ntoulia A, Mitsionis G, Georgoulis AD (2009) Effect of femoral tunnel placement for reconstruction of the anterior cruciate ligament on tibial rotation. J Bone Joint Surg Am 91:2151–2158

    Article  PubMed  Google Scholar 

  97. Robinson JR, Bull AM, Thomas RR, Amis AA (2006) The role of the medial collateral ligament and posteromedial capsule in controlling knee laxity. Am J Sports Med 34:1815–1823

    Article  PubMed  Google Scholar 

  98. Samuelson M, Draganich LF, Zhou X, Krumins P, Reider B (1996) The effects of knee reconstruction on combined anterior cruciate ligament and anterolateral capsular deficiencies. Am J Sports Med 24:492–497

    Article  PubMed  CAS  Google Scholar 

  99. Scarvell JM, Smith PN, Refshauge KM, Galloway H, Woods K (2005) Comparison of kinematics in the healthy and ACL injured knee using MRI. J Biomech 38:255–262

    Article  PubMed  Google Scholar 

  100. Scopp JM, Jasper LE, Belkoff SM, Moorman CT (2004) The effect of oblique femoral tunnel placement on rotational constraint of the knee reconstructed using patellar tendon autografts. Arthroscopy 20:294–299

    Article  PubMed  Google Scholar 

  101. Sekiya JK, Whiddon DR, Zehms CT, Miller MD (2008) A clinically relevant assessment of posterior cruciate ligament and posterolateral corner injuries. Evaluation of isolated and combined deficiency. J Bone Joint Surg Am 90:1621–1627

    Article  PubMed  Google Scholar 

  102. Shahane SA, Ibbotson C, Strachan R, Bickerstaff DR (1999) The popliteofibular ligament. An anatomical study of the posterolateral corner of the knee. J Bone Joint Surg Br 81:636–642

    Article  PubMed  CAS  Google Scholar 

  103. Shapiro MS, Markolf KL, Finerman GA, Mitchell PW (1991) The effect of section of the medial collateral ligament on force generated in the anterior cruciate ligament. J Bone Joint Surg Am 73:248–256

    PubMed  CAS  Google Scholar 

  104. Shoemaker SC, Markolf KL (1985) Effects of joint load on the stiffness and laxity of ligament-deficient knees. An in vitro study of the anterior cruciate and medial collateral ligaments. J Bone Joint Surg Am 67:136–146

    PubMed  CAS  Google Scholar 

  105. Shoemaker SC, Markolf KL (1982) In vivo rotatory knee stability. Ligamentous and muscular contributions. J Bone Joint Surg Am 64:208–216

    PubMed  CAS  Google Scholar 

  106. Shultz SJ, Schmitz RJ (2009) Effects of transverse and frontal plane knee laxity on hip and knee neuromechanics during drop landings. Am J Sports Med 37:1821–1830

    Article  PubMed  Google Scholar 

  107. Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo–Part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res 25:989–996

    Article  PubMed  Google Scholar 

  108. Song EK, Seon JK, Park SJ, Hur CI, Lee DS (2009) In vivo laxity of stable versus anterior cruciate ligament-injured knees using a navigation system: a comparative study. Knee Surg Sports Traumatol Arthrosc 17:941–945

    Article  PubMed  Google Scholar 

  109. Stergiou N, Ristanis S, Moraiti C, Georgoulis AD (2007) Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: a theoretical proposition for the development of osteoarthritis. Sports Med 37:601–613

    Article  PubMed  Google Scholar 

  110. Stoller DW, Markolf KL, Zager SA, Shoemaker SC (1983) The effects of exercise, ice, and ultrasonography on torsional laxity of the knee. Clin Orthop Relat Res 174:172–180

    PubMed  Google Scholar 

  111. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983

    Article  PubMed  Google Scholar 

  112. Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73

    Article  PubMed  Google Scholar 

  113. Taylor WR, Ehrig RM, Duda GN, Schell H, Seebeck P, Heller MO (2005) On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res 23:726–734

    Article  PubMed  Google Scholar 

  114. Thambyah A, Thiagarajan P, Goh Cho Hong J (2004) Knee joint moments during stair climbing of patients with anterior cruciate ligament deficiency. Clin Biomech 19:489–496

    Article  Google Scholar 

  115. Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, Fu FH (2008) Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord 9:35

    Article  PubMed  Google Scholar 

  116. Tsai AG, Wijdicks CA, Walsh MP, Laprade RF (2010) Comparative kinematic evaluation of all-inside single-bundle and double-bundle anterior cruciate ligament reconstruction: a biomechanical study. Am J Sports Med 38:263–272

    Article  PubMed  Google Scholar 

  117. Tsarouhas A, Iosifidis M, Kotzamitelos D, Spyropoulos G, Tsatalas T, Giakas G (2010) Three-dimensional kinematic and kinetic analysis of knee rotational stability after single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy 26:885–893

    Article  PubMed  Google Scholar 

  118. Ullrich K, Krudwig WK, Witzel U (2002) Posterolateral aspect and stability of the knee joint. I. Anatomy and function of the popliteus muscle-tendon unit: an anatomical and biomechanical study. Knee Surg Sports Traumatol Arthrosc 10:86–90

    Article  PubMed  Google Scholar 

  119. Van de Velde SK, Gill TJ, DeFrate LE, Papannagari R, Li G (2008) The effect of anterior cruciate ligament deficiency and reconstruction on the patellofemoral joint. Am J Sports Med 36:1150–1159

    Article  PubMed  Google Scholar 

  120. Vaughan CL, Davis BL, O’Conner JC (1992) Dynamics of human gait. Human Kinetics Publishers, Champaign

    Google Scholar 

  121. Veltri DM, Deng XH, Torzilli PA, Maynard MJ, Warren RF (1996) The role of the popliteofibular ligament in stability of the human knee. A biomechanical study. Am J Sports Med 24:19–27

    Article  PubMed  CAS  Google Scholar 

  122. Waite JC, Beard DJ, Dodd CA, Murray DW, Gill HS (2005) In vivo kinematics of the ACL-deficient limb during running and cutting. Knee Surg Sports Traumatol Arthrosc 13:377–384

    Article  PubMed  CAS  Google Scholar 

  123. Wascher DC, Grauer JD, Markoff KL (1993) Biceps tendon tenodesis for posterolateral instability of the knee. An in vitro study. Am J Sports Med 21:400–406

    Article  PubMed  CAS  Google Scholar 

  124. Whiddon DR, Zehms CT, Miller MD, Quinby JS, Montgomery SL, Sekiya JK (2008) Double compared with single-bundle open inlay posterior cruciate ligament reconstruction in a cadaver model. J Bone Joint Surg Am 90:1820–1829

    Article  PubMed  Google Scholar 

  125. Wojtys EM, Goldstein SA, Redfern M, Trier E, Matthews LS (1987) A biomechanical evaluation of the Lenox Hill knee brace. Clin Orthop Relat Res 220:179–184

    PubMed  Google Scholar 

  126. Wojtys EM, Loubert PV, Samson SY, Viviano DM (1990) Use of a knee-brace for control of tibial translation and rotation. A comparison, in cadavera, of available models. J Bone Joint Surg Am 72:1323–1329

    PubMed  CAS  Google Scholar 

  127. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84:907–914

    PubMed  Google Scholar 

  128. Wright RW, Brand RA, Dunn W, Spindler KP (2007) How to write a systematic review. Clin Orthop Relat Res 455:23–29

    Article  PubMed  Google Scholar 

  129. Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

    Article  PubMed  Google Scholar 

  130. Yamamoto Y, Hsu WH, Fisk JA, Van Scyoc AH, Miura K, Woo SL (2006) Effect of the iliotibial band on knee biomechanics during a simulated pivot shift test. J Orthop Res 24:967–973

    Article  PubMed  Google Scholar 

  131. Yamamoto Y, Hsu WH, Woo SL, Van Scyoc AH, Takakura Y, Debski RE (2004) Knee stability and graft function after anterior cruciate ligament reconstruction: a comparison of a lateral and an anatomical femoral tunnel placement. Am J Sports Med 32:1825–1832

    Article  PubMed  Google Scholar 

  132. Zaffagnini S, Bruni D, Martelli S, Imakiire N, Marcacci M, Russo A (2008) Double-bundle ACL reconstruction: influence of femoral tunnel orientation in knee laxity analysed with a navigation system - an in vitro biomechanical study. BMC Musculoskelet Disord 9:25

    Article  PubMed  Google Scholar 

  133. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227

    Article  PubMed  Google Scholar 

  134. Zehms CT, Whiddon DR, Miller MD, Quinby JS, Montgomery SL, Campbell RB, Sekiya JK (2008) Comparison of a double bundle arthroscopic inlay and open inlay posterior cruciate ligament reconstruction using clinically relevant tools: a cadaveric study. Arthroscopy 24:472–480

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

There are no potential conflicts of interest the authors may have that are relevant to the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tik-Pui Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, MH., Fong, D.TP., Yung, P.SH. et al. Biomechanical techniques to evaluate tibial rotation. A systematic review. Knee Surg Sports Traumatol Arthrosc 20, 1720–1729 (2012). https://doi.org/10.1007/s00167-011-1665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1665-z

Keywords

Navigation