Skip to main content
Log in

FBS Linkage ontology and technique to support engineering change management

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

Engineering changes are essential for any product development, and their management has become a crucial discipline. Research in engineering change management has brought about some methods and tools to support dealing with changes. This work extends the change prediction method through incorporation of a function–behaviour–structure (FBS) scheme. These additional levels of detail provide the rationales for change propagation and allow a more proactive management of changes. First, we develop the ontology of this method based on a comprehensive comparison of three seminal functional reasoning schemes. Then, we demonstrate the FBS Linkage technique by applying it to a diesel engine. Finally, we evaluate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

CAM:

The Cambridge Advanced Modeller

CPM:

The change prediction method

DMM:

Domain mapping matrix

DRM:

The design research methodology

DSM:

Design structure matrix

EC:

Engineering change

FBS:

Function–behaviour–structure

FBSta:

The function–behaviour–state framework

FBStr:

The function–behaviour–structure framework

FR:

Functional reasoning

MDM:

Multidomain matrix

SBF:

The structure–behaviour–function framework

SEM:

Scanning electron microscope

References

  • Ahmad N, Wynn DC, Clarkson PJ (2011b) The evolution of information while building cross-domain models of a design: a video experiment. Paper presented at the international conference on engineering design (ICED’11), Copenhagen, Denmark

  • Ahmed S, Kanike Y (2007) Engineering change during a product’s lifecycle. Paper presented at the international conference on engineering design (ICED’07), Paris, France

  • Albers A, Braun A, Sadowski E, Wynn DC, Wyatt DF, Clarkson PJ (2011) System architecture modeling in a software tool based on the contact and channel approach (C&C-A). J Mech Des 133(10):101006–101008. doi:10.1115/1.4004971

    Article  Google Scholar 

  • Altshuller G (1984) Creativity as an exact science. Gordon and Breach Science, New York

    Google Scholar 

  • Blessing LTM, Chakrabarti A (2009) DRM, a design research methodology. Springer, London

    Book  Google Scholar 

  • Boerstring P, Keller R, Alink T, Eckert CM, Clarkson PJ (2008) The relationship between functions and requirements for an improved detection of component linkages. Paper presented at the international design conference (DESIGN’08), Dubrovnik, Croatia

  • Chandrasekaran B (2005) Representing function: Relating functional representation and functional modeling research streams. Artif Intell Eng Des Anal Manuf (AIEDAM) 19(2):65–74

    MathSciNet  Google Scholar 

  • Clarkson PJ, Hamilton JR (2000) ‘Signposting’, a parameter-driven task-based model of the design process. Res Eng Des 12(1):18–38

    Article  Google Scholar 

  • Clarkson PJ, Simons C, Eckert CM (2001b) Change prediction for product redesign. Paper presented at the international conference on engineering design (ICED’01), Glasgow, UK

  • Clarkson PJ, Simons C, Eckert CM (2004) Predicting change propagation in complex design. J Mech Des 126(5):788–797

    Article  Google Scholar 

  • Cohen T, Fulton RE (1998) A data approach to tracking and evaluating engineering changes. Paper presented at the ASME design engineering technical conference (DETC’98), Atlanta, GA, USA

  • Cohen T, Navathe SB, Fulton RE (2000) C-FAR, change favorable representation. CAD Comput Aided Des 32(5):321–338

    Article  Google Scholar 

  • Eckert CM, Clarkson PJ, Zanker W (2004) Change and customisation in complex engineering domains. Res Eng Des 15(1):1–21

    Article  Google Scholar 

  • Eckert C, Alink T, Ruckpaul A, Albers A (2011) Different notions of function: results from an experiment on the analysis of an existing product. J Eng Des 22(11–12):811–837. doi:10.1080/09544828.2011.603297

    Article  Google Scholar 

  • Erden MS, Komoto H, van Beek TJ, D’Amelio V, Echavarria E, Tomiyama T (2008) A review of function modeling: approaches and applications. Artif Intell Eng Des Anal Manuf (AIEDAM) 22(2):147–169. doi:10.1017/S0890060408000103

    Google Scholar 

  • Far BH, Elamy AH (2005) Functional reasoning theories: problems and perspectives. Artif Intell Eng Des Anal Manuf (AIEDAM) 19(2):75–88. doi:10.1017/s0890060405050080

    Google Scholar 

  • Fei G, Gao J, Owodunni D, Tang X (2011a) A model-driven and knowledge-based methodology for engineering design change management. Comput Aided Des Appl 8(3):373–382

    Google Scholar 

  • Fei G, Gao J, Owodunni OO, Tang X (2011b) A method for engineering design change analysis using system modelling and knowledge management techniques. Int J Comput Integr Manuf 24(6):535–551. doi:10.1080/0951192x.2011.562544

    Article  Google Scholar 

  • Fricke E, Gebhard B, Negele H, Igenbergs E (2000) Coping with changes: causes, findings, and strategies. Syst Eng 3(4):169–179

    Article  Google Scholar 

  • Gero JS (1990) Design prototypes: a knowledge representation schema for design. AI Mag 11(4):26–36

    Google Scholar 

  • Gero JS, Kannengiesser U (2004) The situated function–behaviour–structure framework. Des Stud 25(4):373–391

    Article  Google Scholar 

  • Gero JS, Kannengiesser U (2007) A function–behavior–structure ontology of processes. Artif Intell Eng Des Anal Manuf (AIEDAM) 21(4):379–391

    Google Scholar 

  • Gero JS, Tham KW, Lee HS (1992) Behaviour: a link between function and structure in design. In: Brown DC, Waldron MB, Yoshikawa H (eds) Intelligent computer aided design. Elsevier, Amsterdam, pp 193–225

    Google Scholar 

  • Giffin M, De Weck OL, Bounova G, Keller R, Eckert CM, Clarkson PJ (2009) Change propagation analysis in complex technical systems. J Mech Des 131(8):0810011–08100114

    Article  Google Scholar 

  • Goel AK, Bhatta S (2004) Use of design patterns in analogy-based design. Adv Eng Inf 18(2):85–94. doi:10.1016/j.aei.2004.09.003

    Article  Google Scholar 

  • Goel AK, Chandrasekaran B (1989) Functional representation of designs and redesign problem solving. Paper presented at the international joint conference on artificial intelligence (IJCAI’89), Detroit, MI, USA

  • Goel AK, Stroulia E (1996) Functional device models and model-based diagnosis in adaptive design. Artif Intell Eng Des Anal Manuf (AIEDAM) 10(4):355–370

    Article  Google Scholar 

  • Goel AK, Rugaber S, Vattam S (2009) Structure, behavior, and function of complex systems: the structure, behavior, and function modeling language. Artif Intell Eng Des Anal Manuf (AIEDAM) 23(1):23–35

    Article  Google Scholar 

  • Guenov MD, Barker SG (2005) Application of axiomatic design and design structure matrix to the decomposition of engineering systems. Syst Eng 8(1):29–40. doi:10.1002/sys.20015

    Article  Google Scholar 

  • Hamraz B, Caldwell NHM, Clarkson PJ (2012a) FBS Linkage model—towards an integrated engineering change prediction and analysis method. Paper presented at the international design conference (DESIGN’10), Dubrovnik, Croatia

  • Hamraz B, Caldwell NHM, Clarkson PJ (2012b) A multi-domain engineering change propagation model to support uncertainty reduction and risk management in design. J Mech Des. doi:10.1115/1.4007397

    Google Scholar 

  • Hamraz B, Caldwell NHM, John Clarkson P (2012c) A multidomain engineering change propagation model to support uncertainty reduction and risk management in design. J Mech Des 134(10):100905, 100901–100914. doi:10.1115/1.4007397

  • Hamraz B, Caldwell NHM, Clarkson PJ (2013a) A holistic categorisation framework for literature on engineering change management. Syst Eng 16(4):473–505. doi:10.1002/sys.21244

    Article  Google Scholar 

  • Hamraz B, Hisarciklilar O, Rahmani K, Wynn DC, Thomson V, Clarkson PJ (2013b) Change prediction using interface data. Concurr Eng 21(2):139–154

    Article  Google Scholar 

  • Hirtz J, Stone RB, McAdams DA, Szykman S, Wood KL (2002) A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Des 13(2):65–82. doi:10.1007/s00163-001-0008-3

    Google Scholar 

  • Hubka V, Eder WE (1996) Design science: introduction to the needs, scope and organization of engineering design knowledge. Springer, London

    Book  Google Scholar 

  • Hundal MS (1990) A systematic method for developing function structures, solutions and concept variants. Mech Mach Theory 25(3):243–256. doi:10.1016/0094-114x(90)90027-h

    Article  Google Scholar 

  • IEEE (2012) IEEE Std 1012-2012—standard for system and software verification and validation. Institute of Electrical and Electronics Engineers (IEEE), New York, NY, USA

  • Janthong N (2011) A methodology for tracking the impact of changes in (re)designing of the industrial complex product. Paper presented at the IEEE international conference on industrial engineering and engineering management (IEEM’11), Singapore

  • Jarratt TAW, Eckert CM, Clarkson PJ (2004a) Development of a product model to support engineering change management. Paper presented at the fifth international symposium on tools and methods of competitive engineering (TMCE’04), Lausanne, Switzerland

  • Jarratt TAW, Eckert CM, Clarkson PJ (2004b) The benefits of predicting change in complex products: application areas of a DSM-based prediction tool. Paper presented at the international design conference (DESIGN’04), Dubrovnik, Croatia

  • Jarratt TAW, Eckert CM, Caldwell NHM, Clarkson PJ (2011) Engineering change: an overview and perspective on the literature. Res Eng Des 22(2):103–124

    Article  Google Scholar 

  • Keller R (2007) Predicting change propagation: Algorithms, representations, software tools. Ph.D. thesis, University of Cambridge, Cambridge, UK

  • Keller R, Eckert CM, Clarkson PJ (2009) Using an engineering change methodology to support conceptual design. J Eng Des 20(6):571–587. doi:10.1080/09544820802086988

    Article  Google Scholar 

  • Koh ECY, Caldwell NHM, Clarkson PJ (2012) A method to assess the effects of engineering change propagation. Res Eng Des 23(4):329–351. doi:10.1007/s00163-012-0131-3

    Article  Google Scholar 

  • Lindemann U, Maurer M (2007) Facing multi-domain complexity in product development. In: Krause F-L (ed) The future of product development. Springer, Berlin, pp 351–361. doi:10.1007/978-3-540-69820-3_35

    Chapter  Google Scholar 

  • Lindemann U, Maurer M, Braun T (2009) Structural complexity management. Springer, Berlin

    Book  Google Scholar 

  • Little A, Wood K, McAdams D (1997) Functional analysis: A fundamental empirical study for reverse engineering, benchmarking and redesign. Paper presented at the ASME design theory and methodology conference, Sacramento, CA, USA

  • Maier AM, Langer S (2011) Engineering change management report 2011: survey results on causes and effects, current practice, problems, and strategies in Denmark. DTU Management Engineering, Department of Management Engineering, Technical University of Denmark, Copenhagen, Denmark

  • Malmqvist J, Axelsson R, Johansson M (1996) A comparative analysis of the theory of inventive problem solving and the systematic approach of Pahl and Beitz. Paper presented at the ASME design engineering technical conferences (DETC’96), Irvine, CA, USA

  • Maurer M (2007) Structural awareness in complex product design. Ph.D. Technology University of Munich, Munich, Germany

  • McMahon CA (1994) Observations on modes of incremental change in design. J Eng Des 5(3):195–209

    Article  Google Scholar 

  • Ollinger GA, Stahovich TF (2001) RedesignIT—a constraint-based tool for managing design changes. Paper presented at the ASME design engineering technical conference (DETC’01), Pittsburgh, PA, USA

  • Ollinger GA, Stahovich TF (2004) RedesignIT—a model-based tool for managing design changes. J Mech Des 126(2):208–216

    Article  Google Scholar 

  • Pahl G, Beitz W, Feldhusen JA, Grote K-H (2007) Engineering design: a systematic approach, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Pasqual MC, de Weck OL (2011) Multilayer network model for analysis and management of change propagation. Paper presented at the international conference on engineering design (ICED’11), Copenhagen, Denmark

  • Qian L, Gero JS (1996) Function–behavior–structure paths and their role in analogy-based design. Artif Intell Eng Des Anal Manuf (AIEDAM) 10(4):289–312

    Article  Google Scholar 

  • Rahmani K, Thomson V (2011) Managing subsystem interfaces of complex products. Int J Prod Lifecycle Manag 5(1):73–83. doi:10.1504/ijplm.2011.038103

    Article  Google Scholar 

  • Rahmani K, Thomson V (2012) Ontology based interface design and control methodology for collaborative product development. Comput Aided Des Appl 44(5):432–444. doi:10.1016/j.cad.2011.12.002

    Article  Google Scholar 

  • Rodenacker WG (1971) Methodisches Konstruieren: Grundlagen, Methodik, Praktische Beispiele (German). 1, (4th ed: 1991) edn. Springer, Berlin, Germany

  • Rosenman MA, Gero JS (1998) Purpose and function in design: from the socio-cultural to the techno-physical. Des Stud 19(2):161–186

    Article  Google Scholar 

  • Sembugamoorthy V, Chandrasekaran B (1986) Functional representation of devices and compilation of diagnostic problem solving systems. In: Kolodner JL, Riesbeck CK (eds) Experience, memory, and reasoning. Lawrence Erlbaum Associates, Hillsdale, pp 47–73

    Google Scholar 

  • Simons CS (2000) Change propagation in product design: a change prediction method. M.Phil., University of Cambridge, Cambridge

    Google Scholar 

  • Stone RB, Wood KL (2000) Development of a functional basis for design. J Mech Des 122(4):359–370

    Article  Google Scholar 

  • Szykman S, Racz JW, Sriram RD (1999) The representation of function in computer-based design. Paper presented at the ASME design engineering technical conferences (DETC’99), Las Vegas, NV, USA

  • Umeda Y, Tomiyama T (1997) Functional reasoning in design. IEEE Expert 12(2):42–48

    Article  Google Scholar 

  • Umeda Y, Takeda H, Tomiyama T, Yoshikawa H (1990) Function, behaviour, and structure. In: Gero JS (ed) Applications of artificial intelligence in engineering. Springer, Berlin, pp 177–193

    Google Scholar 

  • Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T (1996) Supporting conceptual design based on the function–behavior–state modeler. Artif Intell Eng Des Anal Manuf (AIEDAM) 10(4):275–288

    Article  Google Scholar 

  • Van Beek TJ, Tomiyama T (2012) Structured workflow approach to support evolvability. Adv Eng Inf 26(3):487–501. doi:10.1016/j.aei.2012.05.003

    Article  Google Scholar 

  • Van Beek TJ, Erden MS, Tomiyama T (2010) Modular design of mechatronic systems with function modeling. Mechatronics 20(8):850–863. doi:10.1016/j.mechatronics.2010.02.002

    Article  Google Scholar 

  • Vermaas PE, Dorst K (2007) On the conceptual framework of John Gero’s FBS-model and the prescriptive aims of design methodology. Des Stud 28(2):133–157. doi:10.1016/j.destud.2006.11.001

    Article  Google Scholar 

  • Wyatt DF, Wynn DC, Jarrett JP, Clarkson PJ (2012) Supporting product architecture design using computational design synthesis with network structure constraints. Res Eng Des 23(1):17–52

    Article  Google Scholar 

  • Wynn DC, Wyatt DF, Nair SMT, Clarkson PJ (2010) An introduction to the Cambridge Advanced Modeller. Paper presented at the 1st international conference on modelling and management of engineering processes (MMEP’10), Cambridge, UK

Download references

Acknowledgments

The authors would like to thank Professor David C. Brown (Computer Science Department, Worcester Polytechnic Institute) for the insightful discussions about functional reasoning and his helpful feedback for the model, Seena Nair (Engineering Design Centre, University of Cambridge) for her support with CAM, Paul N. Turner and Sean G. Harman from Dagenham Diesel Centre of Ford Motor Company for evaluating the method and the diesel engine model, and the Perkins Engine Company for enabling the diesel engine case study. This work was funded by a UK Engineering and Physical Sciences Research Council Doctoral Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Hamraz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamraz, B., Caldwell, N.H.M., Ridgman, T.W. et al. FBS Linkage ontology and technique to support engineering change management. Res Eng Design 26, 3–35 (2015). https://doi.org/10.1007/s00163-014-0181-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-014-0181-9

Keywords

Navigation