Skip to main content
Log in

Filtration of micropolar liquid through a membrane composed of spherical cells with porous layer

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper considers membranes of globular structure in the framework of the cell model technique. The flow of a micropolar fluid through a spherical cell consisting of a solid core, porous layer and liquid envelope is modeled using coupled micropolar and Brinkman-type equations. The solution is obtained in analytical form. Boundary value problems with different conditions on the hypothetical cell surface are considered and compared. The hydrodynamic permeability of the membrane is investigated as a function of micropolar and porous media characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    MATH  Google Scholar 

  2. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. J. Appl. Sci. Res. A1, 27–34 (1947)

    MATH  Google Scholar 

  3. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Martinus Nijoff Publishers, The Hague (1983)

    MATH  Google Scholar 

  4. Perepelkin, P.V., Starov, V.M., Filippov, A.N.: Permeability of a suspension of porous particles. Cellular. model. Kolloidn. Zh. - Colloid J. 54(2), 139–145 (1992). (in Russia)

    Google Scholar 

  5. Vasin, S.I., Starov, V.M., Filippov, A.N.: Hydrodynamic permeability of a membrane regarded as a set of porous particles (the cellular model). Kolloidn. Zh. - Colloid J. 58(3), 307–311 (1996). (in Russia)

    Google Scholar 

  6. Vasin, S.I., Starov, V.M., Filippov, A.N.: Motion of a solid spherical particle covered with a porous layer in a liquid. Kolloidn. Zh. - Colloid J. 58(3), 298–306 (1996). (in Russia)

    Google Scholar 

  7. Vasin, S.I., Filippov, A.N.: Hydrodynamic permeability of the membrane as a system of rigid particles covered with porous layer (cell model). Colloid J. 66(3), 305–309 (2004)

    Google Scholar 

  8. Filippov, A.N., Vasin, S.I., Starov, V.M.: Mathematical modeling of the hydrodynamic permeability of a membrane built up from porous particles with a permeable shell. Colloids Surf. A Physicochem. Eng. Asp. 282–283, 272–278 (2006)

    Google Scholar 

  9. Vasin, S.I., Filippov, A.N., Starov, V.M.: Hydrodynamic permeability of membranes built up by porous shells: cell models. Adv. Coll. Interface Sci. 139, 83–96 (2008)

    Google Scholar 

  10. Vasin, S.I., Filippov, A.N.: Cell models for flows in concentrated media composed of rigid impermeable cylinders covered with a porous layer. Colloid J. 71(2), 141–155 (2009)

    Google Scholar 

  11. Vasin, S.I., Filippov, A.N.: Permeability of complex corous media. Colloid J. 71(1), 31–45 (2009)

    Google Scholar 

  12. Deo, S., Filippov, A.N., Tiwari, A., Vasin, S.I., Starov, V.M.: Hydrodynamic permeability of aggregates of porous particles with an impermeable core. Adv. Coll. Interface Sci. 164(1), 21–37 (2011)

    Google Scholar 

  13. Yadav, P.K., Tiwari, A., Deo, S., Filippov, A.N., Vasin, S.I.: Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mech. 215, 193–209 (2010)

    MATH  Google Scholar 

  14. Yadav, P.K., Tiwari, A., Singh, P.: Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer. Acta Mech. 229, 1869–1892 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Happel, J.: Viscous flow in multiparticle system: slow motion of fluids relative to beds of spherical particles. AIChEJ 4(2), 197–201 (1958)

    MathSciNet  Google Scholar 

  16. Happel, J.: Viscous flow relative to arrays of cylinders. AIChEJ 5(2), 174–177 (1959)

    Google Scholar 

  17. Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14, 527–532 (1959)

    MathSciNet  Google Scholar 

  18. Mehta, G.D., Morse, T.F.: Flow through charged membranes. J. Chem. Phys. 63(5), 1878–1889 (1975)

    Google Scholar 

  19. Cunningham, E.: On the velocity of steady fall of spherical particles through fluid medium. Proc. R. Soc. Lond. A83, 357–365 (1910)

    MATH  Google Scholar 

  20. Kvashnin, A.G.: Cell model of suspension of spherical particles. Fluid Dyn. 14, 598–602 (1979)

    MATH  Google Scholar 

  21. Sochi, T.: Non-Newtonian flow in porous media. Polymer 51, 5007–5023 (2010)

    Google Scholar 

  22. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  23. Eringen, A.C.: Simple micro?uids. Int. J. Eng. Sci. 2, 205–217 (1964)

    Google Scholar 

  24. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  25. Khanukaeva, DYu., Filippov, A.N.: Isothermal flows of micropolar liquids: formulation of problems and analytical solutions. Colloid J. 80(1), 14–36 (2018)

    Google Scholar 

  26. Saad, E.I.: Cell models for micropolar flow past a viscous fluid sphere. Meccanica 47, 2055–2068 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Prasad, M.K., Kaur, M.: Wall effects on viscous fluid spheroidal droplet in a micropolar fluid spheroidal cavity. Eur. J. Mech. B/Fluids 65, 312–325 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Sherief, H.H., Faltas, M.S., Ashmawy, E.A., Abdel-Hameid, A.M.: Parallel and perpendicular flows of a micropolar fluid between slip cylinder and coaxial fictitious cylindrical shell in cell models. Eur. Phys. J. Plus 129, 217 (2014)

    Google Scholar 

  29. Sherief, H.H., Faltas, M.S., Ashmawy, E.A., Nashwan, M.G.: Stokes flow of a micropolar fluid past an assemblage of spheroidal particle-in-cell models with slip. Phys. Scr. 9(5), 055203 (2015)

    Google Scholar 

  30. Khanukaeva, D.Yu., Filippov, A.N., Yadav, P.K., Tiwari, A.: Creeping flow of micropolar fluid parallel to the axis of cylindrical cells with porous layer. Eur. J. Mech. B/Fluids 76, 73–80 (2019)

  31. Khanukaeva, D.Yu., Filippov, A.N., Yadav, P.K., Tiwari, A.: Creeping flow of micropolar fluid through a swarm of cylindrical cells with porous layer (membrane). J. Mol. Liq. 294, 111558 (2019)

  32. Eringen, A.C.: Microcontinuum Field Theories-II: Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  33. Nowacki, W.: Theory of Micropolar Elasticity. Springer, Wien (1970)

    MATH  Google Scholar 

  34. Kamel, M.T., Roach, D., Hamdan, M.H.: On the micropolar fluid flow through porous media, In: Mathematical Methods, System Theory and Control, Proceedings of the 11th MAMECTIS’09, pp. 190–197. WSEAS Press, New York (2009). ISBN: 978-960-474-094-9

  35. Hamdan, M.H., Kamel, M.T.: Polar fluid flow through variable-porosity, isotropic porous media. Spec. Top. Rev. Porous Med. Int. J. 2(2), 145–155 (2011)

    Google Scholar 

  36. Lukaszewicz, G.: Micropolar Fluids—Theory and Applications. Birkhäuser, Basel (1999)

    MATH  Google Scholar 

  37. El-Sapa, S.: Settling slip velocity of a spherical particle in an unbounded micropolar fluid. Eur. Phys. J. E 42, 32–39 (2019)

    Google Scholar 

  38. Filippov, A.N., Khanukaeva, DYu., Vasin, S.I., Sobolev, V.D., Starov, V.M.: Liquid flow inside a cylindrical capillary with walls covered with a porous layer (gel). Colloid J. 75(2), 214–225 (2013)

    Google Scholar 

  39. Filippov, A.N., Ivanov, V.I., Yushkin, A.A., Volkov, V.V., Bogdanova, YuG, Dolzhikova, V.D.: Simulation of the onset of flow through a PTMSP-based polymer membrane during nanofiltration of water–methanol mixture. Petr. Chem. 55(5), 347–362 (2015)

    Google Scholar 

  40. Duan, Q., Wang, H., Benziger, J.: Transport of liquid water through Nafion membranes. J. Membr. Sci. 392–393, 88–94 (2012)

    Google Scholar 

Download references

Acknowledgements

The present work is supported by the Russian Foundation for Basic Research (19-08-00058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Khanukaeva.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Communicated by Tim Colonius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanukaeva, D. Filtration of micropolar liquid through a membrane composed of spherical cells with porous layer. Theor. Comput. Fluid Dyn. 34, 215–229 (2020). https://doi.org/10.1007/s00162-020-00527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00527-x

Keywords

Navigation