Skip to main content
Log in

Lattice Boltzmann methods for global linear instability analysis

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier–Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow. J. Comput. Phys. 206(2), 536–558 (2005)

    Article  MATH  Google Scholar 

  2. Alexander, F.J., Chen, S., Sterling, J.D.: Lattice Boltzmann thermohydrodynamics. Phys. Rev. E 47, R224952 (1993)

    Article  Google Scholar 

  3. Anupindi, K., Lai, W., Frankel, S.: Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method. Comput. Fluids 92, 721 (2014)

    Article  MathSciNet  Google Scholar 

  4. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145–197 (1992)

    Article  Google Scholar 

  5. Bergamo, L.F., Gennaro, E.M., Theofilis, V., Medeiros, M.A.F.: Compressible modes in a square lid-driven cavity. Aerosp. Sci. Technol. 44, 125–134 (2015)

    Article  Google Scholar 

  6. Blackburn, H.M.: Study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255–286 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blackburn, H.M.: Three-dimensional instability and state selection in an oscillatory axisymmetric swirling flow. Phys. Fluids 14(11), 3983–3996 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boppana, V.B.L., Gajjar, J.S.B.: Global flow instability in a lid-driven cavity. Int. J. Numer. Methods Fluids 62(8), 827–853 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Bouzidi, M., d’Humieres, D., Lallemand, P., Luo, L.-S.: Lattice Boltzmann equation on a two-dimensional rectangular grid. J. Comput. Phys. 172, 704–717 (2001)

    Article  MATH  Google Scholar 

  10. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452–3459 (2001)

    Article  MATH  Google Scholar 

  11. Bridges, T., Morris, P.: Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55, 437–460 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Chang, H.-W., Hong, P.-Y., L-S, Lin, Lin, C.-A.: Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units. Comput. Fluids 88, 866–871 (2013)

    Article  Google Scholar 

  14. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge Mathematical Library, Cambridge (1991)

    MATH  Google Scholar 

  15. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  16. Chen, Y., Ohashi, H., Akiyama, M.: Thermal lattice Bhatnagar–Gross–Krook model without nonlinear deviations in macrodynamic equations. Phys. Rev. E 50, 2776–2783 (1994)

    Article  Google Scholar 

  17. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

    Article  MATH  Google Scholar 

  18. d’Humieres, D.: Generalized lattice Boltzmann equations. In: Shizgal, B.D., Weaver, D.P. (eds.) Rarefied Gas Dynamics: Theory and Simulations. Prog. Aeronaut. Astronaut., 159, pp. 450–458 (1992)

  19. d’Humieres, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360(1792), 437–451 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fasel, H.: Investigation of the stability of boundary layers by a finite-difference model of the Navier–Stokes equations. J. Fluid Mech. 78, 335–383 (1976)

    Article  MATH  Google Scholar 

  21. Feldmana, A.Y., Gelfgat, A.Y.: Oscillatory instability of a three-dimensional lid-driven flow in a cube. Phys. Fluids 22, 093602 (2010)

    Article  Google Scholar 

  22. Ghia, U., Ghia, L., Shin, C.T.: High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  23. Gómez, F., Gómez, R., Theofilis, V.: On three-dimensional global linear instability analysis of flows with standard aerodynamics codes. Aerosp. Sci. Technol. 32, 223–234 (2014)

    Article  Google Scholar 

  24. He, X.Y., Luo, L.-S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88, 927–944 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. He, X.Y., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  Google Scholar 

  26. Hecht, M., Harting, J.: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann. J. Stat. Mech. Theory Exp. 2010, P01018 (2010)

    Article  Google Scholar 

  27. Higuera, F.J., Jiménez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989)

    Article  Google Scholar 

  28. Higuera, F.J., Succi, S.: Simulating the flow around a circular cylinder with a lattice Boltzmann. Europhys. Lett. 9, 345–349 (1989)

    Article  Google Scholar 

  29. Hou, S.: Lattice Boltzmann method for incompressible viscous flow. Ph.D. Thesis, Kansas State Univ., Manhattan (1995)

  30. Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118, 329–347 (1995)

    Article  MATH  Google Scholar 

  31. James, D., Shiyi, C.: Stability analysis of lattice Boltzmann methods. Publication: eprint. arXiv:comp-gas/9306001 Publication Date: 06/1993

  32. Junk, M., Yang, Z.: Asymptotic analysis of lattice Boltzmann outflow treatments. Commun. Comput. Phys. 9(5), 1117–1127 (2011)

    Article  MATH  Google Scholar 

  33. Kleiser, L., Schumann, U.: Treatment of incompressibility and boundary conditions in 3D numerical spectral simulations of plane channel flows. In: Hirschel, E.H. (Vieweg and 1980) Braunschweig, S. (eds.), Proceedings of the 3rd GAMM Conference on Numerical Methods in Fluid Mechanics, pp. 165–173 (1980)

  34. Krause, M.: Fluid flow simulation and optimisation with lattice Boltzmann methods on high performance computers: application to the human respiratory system. Ph.D. Thesis, Karlsruhe Institute of Technology (KIT), Universität Karlsruhe (TH), Kaiserstrae 12, 76131 Karlsruhe (2010)

  35. Krause, M.J., Thäter, G., Heuveline, V.: Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods. Comput. Math. Appl. 65, 945–960 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  37. Lavalle, P., Boon, J.P., Noullez, A.: Boundaries in lattice gas flows. Phys. D 47, 233–240 (1991)

    Article  Google Scholar 

  38. Lehoucq, R.B., Sorensen, D.C., Yang, C.: Arpack Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Piladelphia (1998)

    Book  MATH  Google Scholar 

  39. McNamara, G.R., Zanneti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988)

    Article  Google Scholar 

  40. McNamara, G.R., Garcia, A.L., Alder, B.J.: Stabilization of thermal lattice Boltzmann models. J. Stat. Phys. 81, 395–408 (1995)

    Article  MATH  Google Scholar 

  41. Niu, X.D., Shu, C., Chew, Y.T., Wang, T.G.: Investigation of stability and hydrodynamics of different lattice Boltzmann models. J. Stat. Phys. 177(3/4), 665–680 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G., Joseph, D.: The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Int. J. Multiph. Flow 29, 117–169 (2003)

    Article  MATH  Google Scholar 

  43. Orszag, S.A., Kells, L.C.: Transition to turbulence in plane poiseuille flow and plane couette flow. J. Fluid Mech. 96, 159–205 (1980)

    Article  MATH  Google Scholar 

  44. Qian, Y.H.: Simulating thermohydrodynamics with lattice bgk models. J. Sci. Comput. 8, 231–242 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1993)

    Article  MATH  Google Scholar 

  46. Shan, X., Yuan, X.-F., Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413–441 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  47. Shapeev, V.P., Vorozhtsov, E.V.: Cas application to the construction of the collocations and least residuals methods for the solution of 3D Navier–Stokes equations. In: Computer Algebra in Scientific Computing: 15th International Workshop, CASC 2013, Berlin, 9–13 Sept (2013)

  48. Sterling, J.D., Shiyi, C.: Stability analysis of lattice Boltzmann methods. J. Comput. Phys. 123, 196–206 (1996)

    Article  MATH  Google Scholar 

  49. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  50. Tekitek, M.M., Bouzidi, M., Dubois, F., Lallemand, P.: Adjoint lattice Boltzmann equation for parameter identification. Comput. Fluids 35, 805–813 (2006)

    Article  MATH  Google Scholar 

  51. Theofilis, V.: On steady state flow solutions and their non-parallel global linear instability. In: Dopazo, C., et al. (eds.) Advances in Turbulence VIII. Proceedings of the 8th European Turbulence Conference, pp. 35–38. Barcelona (2000)

  52. Theofilis, V.: Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  53. Vergnault, E., Malaspinas, O., Sagaut, P.: A lattice Boltzmann method for nonlinear disturbances around an arbitrary base flow. J. Comput. Phys. 231, 8070–8082 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  54. Vergnault, E., Sagaut, P.: An adjoint-based lattice Boltzmann method for noise control problems. J. Comput. Phys. 276, 39–61 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  55. Williamson, C.H.K.: Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31, 2742–2744 (1988)

    Article  MathSciNet  Google Scholar 

  56. Wolfram, S.: Cellular automaton fluids. 1: basic theory. J. Stat. Phys. 45, 471–526 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  57. Yang, Z.: Lattice Boltzmann outflow treatments: convective conditions and others. Comput. Math. Appl. 65, 160–171 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  58. Zhang, L., Zeng, Z., Xie, H., Zhang, Yo, Lu, Y., Yoshikawa, A., Mizuseki, H., Kawazoe, Y.: A comparative study of lattice Boltzmann models for incompressible flow. Comput. Math. Appl. 68, 1446–1466 (2014)

    Article  MATH  Google Scholar 

  59. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Pérez.

Additional information

Communicated by Ati Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, J.M., Aguilar, A. & Theofilis, V. Lattice Boltzmann methods for global linear instability analysis. Theor. Comput. Fluid Dyn. 31, 643–664 (2017). https://doi.org/10.1007/s00162-016-0416-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0416-7

Keywords

Navigation