Skip to main content
Log in

Numerical study on the oscillation of a transient bubble near a confined free surface for droplet generation

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In the present work, the oscillation of a spark-created bubble near a confined water–air interface and the ensuing droplet generation and ejection are studied numerically using the boundary element method. The interface is accorded by the top opening of either one of the following symmetrical configurations, which are distinguished by the value of angle between their vertical symmetry axis and lateral wall (i.e., θ): (i) a centrally perforated horizontal flat plate (θ = 90°) and (ii) vertically placed cylinder (θ = 0°), nozzle (θ > 0°) and diffuser (θ < 0°). Furthermore, the influences of the effective parameters such as the strength parameter (i.e., the intensity of local energy input), the bubble-free surface distance (standoff distance) and the nozzle size on the bubble dynamics and droplet formation and ejection processes are investigated. It was found that the moment at which the bubble attained its maximum volume was advanced as θ increased. In addition, by decreasing θ the attraction of the bubble toward the free surface during its expansion phase and its migration from the free surface during its contraction phase became stronger. Furthermore, for the nozzle case, by increasing θ, the volume of the droplet was increased. It was also found that by increasing the strength parameter, the volume of the droplet increased and its pinch-off happened earlier. Finally, as the standoff distance was increased, the volume of the droplet increased and its pinch-off was delayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao F., Sonin A.A.: Precise deposition of molten microdrops: the physics of digital microfabrication. Proc. R. Soc. Lond. Ser. A 444(1922), 533–554 (1994)

    Article  Google Scholar 

  2. Dohnal J., Štěpánek F.: Fabrication of composite microcapsules by drop-on-demand inkjet: effect of precursor composition on the process limits. Chem. Eng. Sci. 66(7), 3829–3835 (2011)

    Article  Google Scholar 

  3. Wu B.M., Borland S.W., Giordano R.A., Cima L.G., Sachs E.M., Cima M.J.: Solid free-form fabrication of drug delivery devices. J Control Release 40(1–2), 77–87 (1996)

    Article  Google Scholar 

  4. Sirringhaus H., Kawase T., Friend R.H., Shimoda T., Inbasekaran M., Wu W., Woo E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499), 2123–2126 (2000)

    Article  Google Scholar 

  5. Gan H.Y., Shan X.C., Eriksson T., Lok B.K., Lam Y.C.: Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation. J. Micromech. Microeng. 19(5), 055010–055017 (2009)

    Article  Google Scholar 

  6. Gwynne, P., Heebner, G.: DNA chips and microarrays, Part 1. Science, Product Articles. Available from: http://www.sciencemag.org/products/dnamicro.dtl (2001)

  7. Zhang Y.M., Chen Y., Li P., Male A.T.: Weld deposition-based rapid prototyping: a preliminary study. J. Mater. Process. Technol. 135(2–3), 347–357 (2003)

    Article  Google Scholar 

  8. Nakamura M., Kobayashi A., Takagi F., Watanabe A., Hiruma Y., Ohuchi K., Iwasaki Y., Horie M., Morita I., Takatani S.: Biocompatible inkjet printing for designed seeding of individual. Tissue Eng. 11(11-12), 1658–1666 (2005)

    Article  Google Scholar 

  9. Saunders R.E., Gough J.E., Derby B.: Inkjet printing of mammalian primary cells for tissue engineering applications. Mater. Res. Soc. Symp. Proc. 845, 57–62 (2005)

    Google Scholar 

  10. Calvert P.: Printing cells. Science 318(5848), 208–209 (2007)

    Article  Google Scholar 

  11. Saunders R.E., Gough J.E., Derby B.: Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2), 193–203 (2008)

    Article  Google Scholar 

  12. Lin, L., He, W.D.: Ink jet printing of biosensors for medical diagnostic devices. In: Digital Fabrication 2006, Denver, Colorado, vol. 2, pp. 98–98 (2006)

  13. Rayleigh L.: On the instability of jets. Proc. Lond. Math. Soc. S1–10(1), 4–13 (1878)

    Article  Google Scholar 

  14. Ulmke H., Wriedt T., Bauckhage K.: Piezoelectric droplet generator for the calibration of particle-sizing instruments. Chem. Eng. Technol. 24(3), 265–268 (2001)

    Article  Google Scholar 

  15. Krestschmer, J., Tille, C., Ederer, I.: A drop-on demand inkjet printhead for a wide range of applications. IS & T’s NIP 14, In: International Conference on Digital Printing Technologies, Seattle, WA, pp. 343–347 (1997)

  16. Zoltan, S.I.: Pulsed droplet ejecting system. US patent no. 3683212 (1972)

  17. Kyser, E.L., Sears, S.B.: Method and apparatus for recording with writing fluids and drop projection means therefor. US patent no. 3946398 (1976)

  18. Howkins, S.D.: Method for operating an ink jet device to obtain high resolution Printing. US patent no. 4593291(1986)

  19. Switzer G.L.: A versatile system for stable generation of uniform droplets. Rev. Sci. Instrum. 62(11), 2765–2771 (1991)

    Article  Google Scholar 

  20. Sakai, S.: Recording method by inkjet recording apparatus and recording head adapted for said recording method. US patent no. 5933168 (1999)

  21. Sakai S.: Dynamics of piezoelectric inkjets printing systems. Proc IS&T NIP 16, 15–20 (2000)

    Google Scholar 

  22. Ulmke H., Mietschke M., Bauckhage K.: Piezoelectric single nozzle droplet generator for production of monodisperse droplets of variable diameter. Chem. Eng. Technol. 24(1), 69–70 (2001)

    Article  Google Scholar 

  23. Brünahl J., Grishin A.M.: Piezoelectric shear mode drop-on-demand inkjet actuator. Sens. Actuators A Phys. 101(3), 371–382 (2002)

    Article  Google Scholar 

  24. Chen A.U., Basaran O.A.: A new method for significantly reducing drop radius without reducing nozzle radius in drop-on demand drop production. Phys. Fluids 14(1), L1–L4 (2002)

    Article  Google Scholar 

  25. De Jong J., Jeurissen R., Borel H., van den Berg M., Versluis M., Wijshoff H., Prosperetti A., Reinten H., Lohse D.: Entrapped air bubbles in piezo-driven inkjet printing: their effect on the droplet velocity. Phys. Fluids 18, 121511 (2006)

    Article  Google Scholar 

  26. Ben-Tzvi P., Ben Mrad R., Goldenberg A.A.: A conceptual design and FE analysis of a piezoceramic actuated dispensing system for microdrops generation in microarray applications. J. Mechatron. 17(1), 1–13 (2007)

    Article  Google Scholar 

  27. Kwon K.S., Kim W.: A waveform design method for high-speed inkjet printing based on self-sensing measurement. Sens. Actuators A Phys. 140(1), 75–83 (2007)

    Article  Google Scholar 

  28. Li R., Ashgriz N., Chandra S.: Droplet generation from pulsed micro-jets. Exp. Therm. Fluid Sci. 32(8), 1679–1686 (2008)

    Article  Google Scholar 

  29. Fan K.C., Chen J.Y., Wang C.H., Pan W.C.: Development of a drop on-demand droplet generator for one-drop-fill technology. Sens. Actuators A Phys. 147(2–3), 649–655 (2008)

    Article  Google Scholar 

  30. Link N., Semiat R.: Ink drop motion in wide-format printers I. Drop flow from drop-on-demand (DOD)printing heads. Chem. Eng. Process. 48(1), 68–83 (2009)

    Article  Google Scholar 

  31. Kwon K.S.: Waveform design methods for piezo inkjet dispensers based on measured meniscus motion. J. MEMS 18((5), 1118–1125 (2009)

    Article  Google Scholar 

  32. Li E.Q., Xu Q., Sun J., Fuh J.Y.H., Wong Y.S., Thoroddsen S.T.: Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle. Sens. Actuators A Phys. 163(1), 315–322 (2010)

    Article  Google Scholar 

  33. Khalate, A.A., Bombois, X.J.A., Babuška, R., Wijsho, H., Waarsing, R.: Optimization-based feedforward control for a drop-on-demand inkjet printhead. American Control Conference (ACC), Baltimore, MD, USA, pp. 2182–2187 (2010)

  34. Endo, I., Sato, Y., Saito, S., Nakagiri, T., Ohno, S.: Liquid jet recording process and apparatus therefor. UK patent no. 2007162 (1979)

  35. Vaught, J.L., Cloutier, F.L., Donald, D.K., Meyer, J.D., Tacklind, C.A., Taub, H.H.: Thermal ink jet printer. US patent no. 4490728 (1984)

  36. Hirata, S., Ishii, Y., Matoba, H., Inui, T.: An ink-jet head using diaphragm microactuator. In: Proceedings of MEMS’96, 9th IEEE International Workshop MEMS, pp. 418-423 (1996)

  37. Wang Y., Bokor J., Lee A.: Maskless lithography using drop-on-demand inkjet printing method. Proc. SPIE 5374, 628–636 (2004)

    Article  Google Scholar 

  38. Cabal A., Ross D.S., Lebens J.A., Trauernicht D.P.: Thermal actuator with optimized heater for liquid drop ejectors. Sens. Actuators A Phys. 123–124, 531–539 (2005)

    Article  Google Scholar 

  39. Dadvand A., Khoo B.C., Shervani-Tabar M.T.: A collapsing bubble induced microinjector: an experimental study. Exp. Fluids 46(3), 419–434 (2009)

    Article  Google Scholar 

  40. Shervani-Tabar M.T., Dadvand A., Khoo B.C., Nobari M.R.H.: A numerical and experimental study of a collapsing bubble-induced droplet ejector. Theor. Comput. Fluid Dyn. 23(4), 297–316 (2009)

    Article  MATH  Google Scholar 

  41. Dadvand A., Shervani-Tabar M.T., Khoo B.C.: A note on spark bubble drop-on-demand droplet generation: simulation and experiment. Int. J. Adv. Manuf. Technol. 56(1–4), 245–259 (2011)

    Article  Google Scholar 

  42. Castrejón-Pita J.R., Martin G.D., Hoath S.D., Hutchings I.M.: A simple large scale droplet generator for studies of inkjet printing. Rev. Sci. Instrum. 79(7), 075108–0751088 (2008)

    Article  Google Scholar 

  43. Koltay, P., Birkenmeier, B., Steger, R., Sandmaier, H., Zengerle, R.: Massive parallel liquid dispensing in the nanoliter range by pneumatic actuation. In: International Conference on New Actuators, pp. 235–239 (2002)

  44. Foutsis, V.: Producing small molten metal drops with a pneumatic generator. M.A.Sc. thesis, University of Toronto, Toronto (2004)

  45. Cheng S.X., Li T., Chandra S.: Producing molten metal droplets with a pneumatic droplet-on-demand generator. J. Mater. Process. Technol. 159(3), 295–302 (2005)

    Article  Google Scholar 

  46. Amirzadeh Goghari A., Chandra S.: Producing droplets smaller than the nozzle diameter by using a pneumatic drop-on-demand droplet generator. Exp. Fluids 44(1), 105–114 (2008)

    Article  Google Scholar 

  47. Xie D., Zhang H.H., Shu X.Y., Xiao J.F., Cao S.: Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator. Sci. China Technol. Soc. 53(6), 1605–1611 (2010)

    Article  Google Scholar 

  48. Kamisuki, S., Hagata, T., Tezuka, C., Nose, Y., Fujii, M., Atobe, M.: A low power, small, electrostatically driven commercial inkjet head. In: 11th Annual International Workshop on MEMS, pp. 63–68 (1998)

  49. Kamisuki, S., Fujii, M., Takekoshi, T., Tezuka, C., Atobe, M.: A high resolution, electrostatically driven commercial inkjet head. In: 13th Annual International Conference on MEMS, pp. 793–798 (2000)

  50. Kim S.J., Song Y.A., Skipper P.L., Han J.: Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly (dimethylsiloxane) microchip. Anal. Chem. 78(23), 8011–8019 (2006)

    Article  Google Scholar 

  51. Rahman K., Khan A., Nam N.M., Choi K.H., Kim D.S.: Study of drop-on-demand printing through multi-step pulse voltage. Int. J. Precis. Eng. Manuf. 12(4), 663–669 (2011)

    Article  Google Scholar 

  52. Ben-Tzvi P., Rone W.: Microdroplet generation in gaseous and liquid environments. Microsyst. Technol. 16(3), 333–356 (2010)

    Article  Google Scholar 

  53. Chahine G.L.: Interaction between an oscillating bubble and a free surface. ASME I: J. Fluid Eng. 99, 709–716 (1977)

    Google Scholar 

  54. Blake J.R., Gibson D.C.: Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123–140 (1981)

    Article  Google Scholar 

  55. Blake J.R., Taib B.B., Doherty G.: Transient cavities near boundaries, part 2, free surface. J. Fluid Mech. 181, 197–212 (1987)

    Article  Google Scholar 

  56. Dommermuth D.G., Yue D.K.P.: Numerical simulation of nonlinear axisymmetric flows with a free surface. J. Fluid Mech. 178, 195–219 (1987)

    Article  MATH  Google Scholar 

  57. Boulton-Stone J.M., Blake J.R.: Gas bubbles bursting at a free surface. J. Fluid Mech. 254(1), 437–466 (1993)

    Article  MATH  Google Scholar 

  58. Shervani-Tabar, M.T.: Computer study of a cavity bubble near a rigid boundary, a free surface and a compliant wall. Ph.D. thesis, University of Wollongong, Wollongong, Australia (1995)

  59. Wang Q.X., Yeo K.S., Khoo B.C., Lam K.Y.: Strong interaction between a buoyancy bubble and a free surface. J. Theor. Comput. Fluid Dyn. 8, 73–88 (1996)

    Article  MATH  Google Scholar 

  60. Wang Q.X., Yeo K.S., Khoo B.C., Lam K.Y.: Nonlinear interaction between gas bubble and free surface. J. Comput. Fluids 25(7), 607–628 (1996)

    Article  MATH  Google Scholar 

  61. Tomita, Y., Kodama, T.: Some aspects of the motion of two laser produced cavitation bubbles near a free surface. In: IUTAM Symposium on Free Surface Flows, pp. 303–310, Springer, Netherlands (2001)

  62. Robinson P.B., Blake J.R., Kodama T.: Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89(1), 8225–8237 (2001)

    Article  Google Scholar 

  63. Pearson A., Cox E., Blake J.R., Otto S.R.: Bubble interactions near a free surface. Eng. Anal. Bound. Elem. 28(4), 295–313 (2004)

    Article  MATH  Google Scholar 

  64. Benjamin T.B., Ellis A.T.: The collapse of cavitation bubbles and pressure thereby produced against solid boundary. Philos. Trans. R. Soc. Lond. A 260, 221–240 (1966)

    Article  Google Scholar 

  65. Guerri, L., Lucca, G., Prosperetti, A.: A numerical method for the dynamics of non- spherical cavitation bubbles. In: Proceedings of the 2nd International Colloquium on Drops and Bubbles, pp. 175–181 (1981)

  66. Blake J.R., Taib B.B., Doherty G.: Transient cavities near boundaries, part 1, rigid boundary. J. Fluid Mech. 170, 479–497 (1986)

    Article  MATH  Google Scholar 

  67. Chahine, G.L., Perdue, T.O.: Simulation of the three dimensional behaviour of an unsteady large bubble near a structure. In: AIP Conference Proceedings, vol. 197, p. 188 (1990)

  68. Harris P.J.: A numerical model for determining the motion of a bubble close to a fixed rigid structure in a fluid. Int. J. Numer. Methods Eng. 33(9), 1813–1822 (1992)

    Article  MATH  Google Scholar 

  69. Harris P.J.: A numerical method for predicting the motion of a bubble close to a moving rigid structure. Commun. Numer. Methods Eng. 9(1), 81–86 (1993)

    Article  MATH  Google Scholar 

  70. Shervani-Tabar, M.T., Arshadi, K.: Numerical study on the dynamics of a cavitation bubble near a rigid body. In: 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia, pp. 641–644 (2001)

  71. Brujan E.A., Keen G.S., Vogel A., Blake J.R.: The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14(1), 85–92 (2002)

    Article  Google Scholar 

  72. Huang J., Zhang H.: Level set method for numerical simulation of a cavitation bubble, its growth, collapse and rebound near a rigid wall. Acta Mech. Sin. 23(6), 645–653 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  73. Shervani-Tabar M.T., Mobadersany N., Mahmoudi S.M.S., Rezaee-Barmi A.: Velocity field and pressure distribution around a collapsing cavitation bubble during necking and splitting. J. Eng. Math. 71, 349–366 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  74. Duncan J.H., Zhang S.: On the interaction of a collapsing cavity and a compliant wall. J. Fluid Mech. 226, 401–423 (1991)

    Article  MATH  Google Scholar 

  75. Shervani-Tabar, M.T.: Dynamics of a pulsating bubble near a compliant surface. In: The International Conference on Boundary Element Methods in Engineering (BEM,21),Oxford University, Oxford, U.K. (1999)

  76. Turangan C.K., Ong G.P., Klaseboer E., Khoo B.C.: Experimental and numerical study of transient bubble-elastic membrane interaction. J. Appl. Phys. 100(5), 054910(1–7) (2006)

    Article  Google Scholar 

  77. Klaseboer E., Turangan C.K., Khoo B.C.: Dynamic behavior of a bubble near an elastic infinite interface. Int. J. Multiph. Flow. 32(9), 1110–1122 (2006)

    Article  MATH  Google Scholar 

  78. Ohl S.W., Klaseboer E., Khoo B.C.: The dynamics of a non-equilibrium bubble near bio-materials. Phys. Med. Biol. 54(20), 6313–6336 (2009)

    Article  Google Scholar 

  79. Yuan H., Oguz H.N., Prosperetti A.: Growth and collapse of a vapor bubble in a small tube. Int. J. Heat Mass Transfer. 42, 3653–3657 (1999)

    Article  Google Scholar 

  80. Paris F., Canas J.: Boundary Element Method Fundamentals and Applications. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  81. Beer G., Watson J.O.: Introduction to Finite and Boundary Element Methods for Engineers. Wiley, Brisbane (1992)

    MATH  Google Scholar 

  82. Rayleigh L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 34, 94–98 (1917)

    Article  MATH  Google Scholar 

  83. Plesset M.S.: The dynamics of cavitation bubbles. ASME J. Appl. Mech. 16, 228–231 (1949)

    Google Scholar 

  84. Taib, B.B.: Boundary integral methods applied to cavitation bubble dynamics. Ph.D. thesis, University of Wollongong, NSW, Australia (1985)

  85. Longuet-Higgins M.S., Cokelet E.D.: The deformation of steep waves on water: I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 1–26 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  86. Fong S.W., Adhikari D., Klaseboer E., Khoo B.C.: Interactions of multiple spark-generated bubbles with phase differences. Exp. Fluids 46(4), 705–724 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureyeh Saleki-Haselghoubi.

Additional information

Communicated by S. Balachandar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleki-Haselghoubi, N., Shervani-Tabar, M.T., Taeibi-Rahni, M. et al. Numerical study on the oscillation of a transient bubble near a confined free surface for droplet generation. Theor. Comput. Fluid Dyn. 28, 449–472 (2014). https://doi.org/10.1007/s00162-014-0323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-014-0323-8

Keywords

Navigation