Skip to main content
Log in

A numerical and experimental study of a collapsing bubble-induced droplet ejector

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to study a novel drop-on-demand droplet generation mechanism in which the oscillation and deformation of a non-equilibrium bubble in close proximity to a free surface induce an axisymmetric liquid spike on the free surface. The evolution of the liquid spike and its deformation due to the effect of surface tension force lead to the formation of a droplet. The free surface can be accorded by either a circular hole on a horizontal flat plate or by the top opening/nozzle of a vertical cylinder. A high-speed camera capable of obtaining images at a frame rate of 15,000 fps is utilized to observe the droplet formation process. Numerical simulations corresponding to the experiments are performed using the boundary integral spatial solution coupled with the time integration, i.e., a mixed Eulerian–Lagrangian method. In the experiments the bubble is generated using a very low voltage (only 55 V) in contrast to the relatively much higher voltages usually employed in reported works. This is very attractive from a safety viewpoint and accords great simplification of the setup. A comparison is made between the numerical and experimental results. A reasonable agreement has been found. The influences of the main design parameters, namely, the bubble-free surface distance and the dimension of the hole/nozzle on the bubble dynamics and on the droplet formation process are discussed and the conditions of the bubble dynamics under which a satellite-free droplet can be generated are sought. Furthermore, the effects of different geometries, namely, the horizontal flat plate and the vertical cylinder on the bubble dynamics and on the droplet features are examined. One important feature of the proposed actuation mechanism is the capability of producing droplets much smaller than the nozzle size. The possible applications of this mechanism are those where the accurate direction of the ejected droplet is of great importance such as inkjet printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tseng, F.G.: A micro droplet generation system. PhD thesis, UCLA, USA (1998)

  2. Feng J.Q.: A general fluid dynamics analysis of drop ejection in drop-on-demand ink jet devices. J. Imaging Sci. Technol. 46, 398–408 (2002)

    Google Scholar 

  3. Wang, Y.: Applying drop-on-demand inkjet printing method to maskless lithography. PhD thesis, University of California at Berkeley, Berkeley (2005)

  4. Chen P.H., Chen W.C., Chang S.H.: Bubble growth and ink jet ejection process of a thermal ink-jet printhead. Int. J. Mech. Sci. 39, 683–695 (1997)

    Article  Google Scholar 

  5. Fromm, J.: A numerical study of drop-on-demand ink jets. In: Proceedings of the second international colloquium on drops and bubbles, NASA JPL Publication 82–7, California Institute of Technology, Pasadena (1982)

  6. Allen R.R., Meyer J.D., Knight W.R.: Thermodynamics and hydrodynamics of thermal ink jets. Hewlett-Packard J. 36, 21–27 (1985)

    Google Scholar 

  7. Badie R., de Lange D.F.: Mechanism of drop constriction in a drop-on-demand inkjet system. Proc. R. Soc. London Ser. A 453, 2573 (1997)

    Article  MATH  Google Scholar 

  8. Shin D.Y., Grassia P., Derby B.: Oscillatory incompressible fluid flow in a tapered tube with a free surface in an inkjet print head. ASME Trans. J. Fluids Eng. 127(1), 98–109 (2005)

    Article  Google Scholar 

  9. Adams R.L., Roy J.: A one-dimensional numerical model of a drop-on-demand ink jet. J. Appl. Mech. 53, 193–197 (1986)

    Article  Google Scholar 

  10. Shield T.W., Bogy D.B., Talke F.E.: Drop formation by DOD ink-jet nozzles: a comparison of experimental and numerical simulation. IBM J. Res. Dev. 31, 96–110 (1987)

    Article  Google Scholar 

  11. Shin D.Y., Grassia P., Derby B.: Numerical and experimental comparisons of mass transport rate in a piezoelectric drop-on-demand inkjet print head. Int. J. Mech. Sci. 46, 181–199 (2004)

    Article  Google Scholar 

  12. Fromm J.: Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28(3), 322–333 (1984)

    Google Scholar 

  13. Rembe C., Patzer J., Hofer E.P., Krehl P.: Realcinematographic visualization of droplet ejection in thermal ink jets. J. Imaging Sci. Technol. 40(5), 400–404 (1996)

    Google Scholar 

  14. Dong H., Carr W.W., Morris J.F.: An experimental study of drop-on-demand drop formation. Phys. Fluids 18, 072102 (2006)

    Article  Google Scholar 

  15. Dong H., Carr W.W., Morris J.F.: Visualization of drop-on-demand inkjet: drop formation and deposition. Rev. Sci. Instrum. 77, 085101 (2006)

    Article  Google Scholar 

  16. Aleinov, I.D., Sussman, M., Puckett, E.G.: Formation of droplets in microscale jetting devices, In: Proceedings of the 3rd ASME/JSME joint fluids engineering conference, San Francisco, CA (FEDSM99-7106), July 18–23 (1999)

  17. Yu J.D., Sakai S., Sethian J.A.: A coupled quadrilateral grid level set projection method applied to ink jet simulation. J. Comp. Phys. 206(1), 227–251 (2005)

    Article  MATH  Google Scholar 

  18. Yu J.D., Sakai S., Sethian J.A.: Two-phase viscoelastic jetting. J. Comp. Phys. 220(2), 568–585 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Asai A., Hara T., Endo I.: One-dimensional model of bubble growth and liquid flow in bubble jet printers. Jpn. J. Appl. Phys. 26(10), 1794–1801 (1987)

    Article  Google Scholar 

  20. Asai A.: Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer. ASME J. Fluids Eng. 114, 638–641 (1992)

    Article  Google Scholar 

  21. Xu Q., Basaran O.A.: Computational analysis of the drop-on-demand drop formation. Phys. Fluids 19, 102111 (2007)

    Article  Google Scholar 

  22. Sakai, S.: Dynamics of piezoelectric inkjet printing systems. In: Proceedings of IS&T’s NIP 16: International conference on digital printing technologies, vol. 16, pp. 15–20. Vancouver BC, Canada (2000)

  23. Blake J.R., Gibson D.C.: Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 124–140 (1981)

    Article  Google Scholar 

  24. Pearson A., Cox E., Blake J.R., Otto S.R.: Bubble interactions near a free surface. Eng. Anal. Boundary Elem. 28, 295–313 (2004)

    Article  MATH  Google Scholar 

  25. Wang Q.X., Yeo K.S., Khoo B.C., Lam K.Y.: Strong interaction between a buoyancy bubble and a free surface. Theor. Comput. Fluid Dyn. 8, 73–88 (1996)

    Article  MATH  Google Scholar 

  26. Wang Q.X., Yeo K.S., Khoo B.C., Lam K.Y.: Nonlinear interaction between gas bubble and free surface. Comput. Fluids 25(7), 607–628 (1996)

    Article  MATH  Google Scholar 

  27. Shima A., Takayama K., Tomita Y.: Mechanism of impact pressure generation from spark-generated bubble collapse near a wall. AIAA J. 21, 55–59 (1983)

    Article  Google Scholar 

  28. Soh W.K., Shervani-Tabar M.T.: Computer model for a pulsating vapor bubble near a rigid surface. Comput. Fluid Dyn. J. 3(1), 223–236 (1994)

    Google Scholar 

  29. Chan P.C., Kan K.K., Stuhmiller J.M.: A computational study of bubble-structure interaction. J. Fluids Eng. 122, 783–790 (2000)

    Article  Google Scholar 

  30. Yuan H., Oguz H.N., Prosperetti A.: Growth and collapse of a vapor bubble in a small tube. Int. J. Heat Mass Transf. 42, 3653–3657 (1999)

    Article  Google Scholar 

  31. Shervani-Tabar M.T., Maghsoudi K.: Numerical study on the splitting of a vapour bubble in the process of EDM. Int. J. Adv. Manuf. Technol. 38, 657–673 (2008). doi:10.1007/s00170-007-1123-8

    Article  Google Scholar 

  32. Nitsche M., Steen P.H.: Numerical simulations of inviscid capillary pinchoff. J. Comput. Phys. 200, 299–324 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Taib, B.B.: Boundary integral methods applied to cavitation bubble dynamics. PhD thesis, University of Wollongong, NSW, Australia (1985)

  34. Abramowitz M., Stegun I.A.: Handbook of mathematical functions. Dover, New York (1965)

    Google Scholar 

  35. Hastings C.: Approximations for digital computers. Princeton University press, Princeton (1955)

    MATH  Google Scholar 

  36. Arfken G.B., Weber H.J.: Mathematical methods for physicists. Harcourt/Academic Press, New York (2001)

    MATH  Google Scholar 

  37. Longuet-Higgins M.S., Cokelet E.D.: The deformation of steep waves on water: I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 1–26 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  38. Best J.P., Kucera A.: A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 247, 137–154 (1992)

    Article  Google Scholar 

  39. Dadvand A., Khoo B.C., Shervani-Tabar M.T.: A collapsing bubble-induced microinjector: an experimental study. Exp. Fluids 46, 419–434 (2009). doi:10.1007/s00348-008-0568-3

    Article  Google Scholar 

  40. Buogo S., Cannelli G.B.: Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J. Acoust. Soc. Am. 111(6), 2594–2600 (2002)

    Article  Google Scholar 

  41. Soh W.K., Willis B.: A flow visualization study on the movements of solid particles propelled by a collapsing cavitation bubble. Exp. Thermal Fluid Sci. 27, 537–544 (2003)

    Article  Google Scholar 

  42. Lee M., Klaseboer E., Khoo B.C.: On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407–429 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Turangan C.K., Ong G.P., Klaseboer E., Khoo B.C.: Experimental and numerical study of transient bubble-elastic membrane interaction. J. Appl. Phys. 100, 054910 (2006)

    Article  Google Scholar 

  44. Klaseboer E., Turangan C.K., Khoo B.C.: Dynamic behaviour of a bubble near an elastic infinite interface. Int. J. Multiph. Flow 32, 1110–1112 (2006)

    Article  MATH  Google Scholar 

  45. Khoo B.C., Klaseboer E., Hung K.C.: A collapsing bubble-induced micro-pump using jetting effect. Sensor. Actuat. A-Phys. 118, 152–161 (2005)

    Article  Google Scholar 

  46. Lew K.S.F., Klaseboer E., Khoo B.C.: A collapsing bubble-induced micro-pump: an experimental study. Sensor. Actuat. A-Phys. 133, 161–172 (2007)

    Article  Google Scholar 

  47. Zhang Y.L., Yeo K.S., Khoo B.C., Wang C.: 3D jet impact and toroidal bubbles. J. Comp. Phys. 166, 336–360 (2001)

    Article  MATH  Google Scholar 

  48. Wang, Q.X., Yeo, K.S., Khoo, B.C., Lam, K.Y.: Vortex ring modeling of toroidal bubbles. Theor. Comput. Fluid Dyn. 1–15 (2005). doi:10.1007/s00162-005-0164-6

  49. Fong, S.W., Adhikari, D., Klaseboer, E., Khoo, B.C.: Interactions of multiple spark-generated bubbles with phase differences. Exp. Fluids (2008). doi:10.1007/s00348-008-0603-4

  50. Tan K.L., Khoo B.C., White J.K.: A level set-boundary element method for the simulation of underwater bubble dynamics. SIAM J. Sci. Comput. 30(2), 549–571 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolrahman Dadvand.

Additional information

Communicated by M. Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shervani-Tabar, M.T., Dadvand, A., Khoo, B.C. et al. A numerical and experimental study of a collapsing bubble-induced droplet ejector. Theor. Comput. Fluid Dyn. 23, 297–316 (2009). https://doi.org/10.1007/s00162-009-0123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0123-8

Keywords

PACS

Navigation