Skip to main content
Log in

Spectral methods based on the least dissipative modes for wall bounded MHD flows

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We present a new approach for the Spectral Direct Numerical Simulation (DNS) of Low-Rm wall-bounded magnetohydrodynamic (MHD) flows. The novelty is that instead of using bases similar to the usual Chebyshev polynomials, which are easy to implement but incur heavy computational costs to resolve the Hartmann boundary layers that arise along the walls, we use a basis made of elements that already incorporate flow structures such as anisotropic vortices and Hartmann layers. We show that such a basis can be obtained from the eigenvalue problem of the linear part of the governing equations with the problem’s boundary conditions. Since this basis is not always orthogonal, we develop a spectral method for non-orthogonal bases. We then demonstrate the efficiency of this method on the simple case of a laminar channel flow with periodic forcing. In particular, we show that this method eliminates the computational costs incurred this Hartmann layer, and this for arbitrary high magnetic fields B. We then discuss the application of our method to nonlinear, turbulent flows for which the number of modes required to resolve the flow completely decreases strongly when B increases, instead of increasing as in the case of currently employed Chebyshev-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alboussière T., Lingwood R.J.: A model for the turbulent hartmann layer. Phys. Fluids 12(6), 1535–1543 (2000)

    Article  MATH  Google Scholar 

  2. Alemany A., Moreau R., Sulem P., Frish U.: Influence of an external magnetic field on homogeneous MHD turbulence. Journal de Mécanique 18(2), 277–313 (1979)

    Google Scholar 

  3. Boeck T., Krasnov D., Zienicke E.: Numerical study of turbulent magnetohydrodynamic channel flow. J. Fluid Mech. 572, 179–188 (2007)

    Article  MATH  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Application to Fluid Dynamics. Springer-Verlag (2006)

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer-Verlag (2006)

  6. Davidson P.A.: Role of angular momentum in the magnetic damping of turbulence. J. Fluid Mech. 336, 123–150 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press (2001)

  8. Delannoy, Y., Pascal, B. Alboussière, T., Uspenski, V., Moreau, R.: Quasi-Two-Dimensional Turbulence in MHD Shear Flows: The Matur Experiment and Simulations. Kluwer, a. alemany et al. edition (1999)

  9. Dousset, V.: Two- and three-dimensional numerical simulations of MHD flows past cylinders under an externally applied axial magnetic field. PhD thesis, Coventry University (2009) (submitted)

  10. Dousset V., Pothérat A.: Numerical simulations of a cylinder wake under a strong axial magnetic field. Phys. Fluids 20, 017104 (2008)

    Article  Google Scholar 

  11. Dymkou V.: Application of operator theory for the representation of continuous and discrete distributed parameter systems. PhD thesis (2006)

  12. Dymkou V., Rabenstein R., Steffen P.: Discrete simulation of a class of distributed systems using functional analytic methods. Multidimens. Syst. Signal Process. 17, 177–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Foias C., Manley O., Rosa R., Temam R.: Navier-stokes equations and turbulence. Cambridge University Press (2001)

  14. Fursikov A.V.: Stabilizability of quasi-linear parabolic equations by means of a boundary control with feedback. Sbornik Math. 192(4), 593–639 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fursikov A.V.: Stabilizability of two-dimensional Navier-Stokes equations with help of boundary feedback control. J. Math. Fluid Mech. 3, 259–301 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Il’in V.A.: Necessary and sufficient condition for the subsystem of eigenfunctions and associated functions of keldysh’s pencil of ordinary differential operators to form a basis. DAN USSR 231(4), 796–799 (1976) in Russian

    Google Scholar 

  17. Keldysh M.V.: About eigenvalues and eigenfunctions for some classes of not self-adjoint equations. DAN USSR 77(14), 11–14 (1951) (in Russian)

    MATH  Google Scholar 

  18. Keldysh M.V.: On the completeness of eigenfunctions for certain classes of not self-adjoint linear operators. Russ. Math. Surv. 26(4), 15–44 (1971)

    Article  MATH  Google Scholar 

  19. Klein, R.: An Experiment on the Transition Between Two-Dimensional and Three-Dimensional MHD Turbulence at Low Magnetic Reynolds Number. PhD thesis (2009) (submitted)

  20. Klein, R., Potherat, A.: Experimental evidence of three-dimensional structures in steady and unsteady low Rm MHD flows. Phys. Rev. Lett. (submitted).

  21. Klein, R., Pothérat, A., Alferjonok, A.: An experiment on an electrically driven, confined vortex pair. Phys. Rev. E, Statistical, Nonlinear, and Soft Matter Physics, art. no. 016304 79(1) (2009)

  22. Knaepen B., Moin P.: Large-eddy simulation of conductive flows at low magnetic Reynolds number. Phys. Fluids 16(5), 1255–1261 (2004)

    Article  MathSciNet  Google Scholar 

  23. Kolmogorov A.N.: Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 299–303 (1941)

    Google Scholar 

  24. Leboucher L.: Monotone scheme and boundary conditions for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number. J. Comp. Phys. 150, 181–198 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lee D., Choi H: Magnetohydrodynamic turbulent flow in a channel at low magnetic Reynolds number. J. Fluid. Mech. 439, 367–374 (2001)

    Article  MATH  Google Scholar 

  26. Moffatt H.K.: On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 28, 571–592 (1967)

    Article  Google Scholar 

  27. Molokov S., Stieglitz R.: Liquid-metal flow in a system of electrically coupled u-bends in a strong uniform magnetic field. J. Fluid Mech. 299, 73–95 (1995)

    Article  MATH  Google Scholar 

  28. Moreau, R.: Magnetohydrodynamics. Kluwer Academic Publisher (1990)

  29. Mück B., Günter C., Bühler L.: Buoyant three-dimensional MHD flows in rectangular ducts with internal obstacles. J. Fluid Mech. 418, 265–295 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pothérat, A., Alboussière, T.: Small scales and anisotropy in low-Rm MHD turbulence. Phys. Fluids 1370–1380 (2003)

  31. Pothérat, A., Alboussière, T.: Bounds on the attractor dimension for low-Rm wall-bound MHD turbulence. Phys. Fluids (2006)

  32. Pothérat, A., Dymkou, V.: DNS of low-Rm MHD turbulence based on the least dissipative modes. J. Fluid Mech. (in revision)

  33. Pothérat A., Sommeria J., Moreau R.: An effective two-dimensional model for MHD flows with transverse magnetic field. J. Fluid Mech. 424, 75–100 (2000)

    Article  MATH  Google Scholar 

  34. Pothérat, A., Sommeria, J., Moreau, R.: Effective boundary conditions for magnetohydrodynamic flows with thin Hartmann layers. Phys. Fluids 403–410 (2002)

  35. Roberts, P. H.: Introduction to Magnetohydrodynamics. Longmans (1967)

  36. Schmid P.J., Henningson D.S.: Stability and Transition in Shear Flows. Spinger-Verlag, New York (2001)

    MATH  Google Scholar 

  37. Sommeria J.: Experimental study of the two-dimensionnal inverse energy cascade in a square box. J. Fluid Mech. 170, 139–168 (1986)

    Article  Google Scholar 

  38. Sommeria J.: Electrically driven vortices in a strong magnetic field. J. Fluid Mech. 189, 553–569 (1988)

    Article  Google Scholar 

  39. Stieglitz R., Barleon L., Bühler L., Molokov S.: Magnetohydrodynamic flow in a right-angle bend in a strong magnetic field. J. Fluid Mech. 326, 91–123 (1996)

    Article  MATH  Google Scholar 

  40. Thess A.: Instabilities in two-dimensional periodic flows part III: Square eddy lattice. Phys. Fluids A 4(7), 1396–1407 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Thess A., Zikanov O.: Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 579, 383–412 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dymkou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dymkou, V., Pothérat, A. Spectral methods based on the least dissipative modes for wall bounded MHD flows. Theor. Comput. Fluid Dyn. 23, 535–555 (2009). https://doi.org/10.1007/s00162-009-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0159-9

Keywords

PACS

Navigation