Skip to main content
Log in

Second-Law Analysis of the Peristaltic Flow of an Incompressible Viscous Fluid in a Curved Channel

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The present investigation extends a consideration of peristaltic flow in curved channels through the second-law analysis. The lubrication approximation is employed to linearize the momentum, energy, and entropy generation rate equations. The stream function and temperature distribution are used to calculate the entropy generation number and the Bejan number. It is shown that the entropy generation rate in a peristaltic pump increases with the occlusion parameter. The entropy generation increases at the upper wall and decreases near the lower wall of the peristaltic channel as the curvature parameter increases. A curved surface acts as a strong source of entropy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, Peristaltic pumping with long wavelength at low Reynolds number, J. Fluid Mech., 35, 669–675 (1969).

    Google Scholar 

  2. C. Pozrikidis, A study of peristaltic flow, J. Fluid Mech., 180, 515–527 (1987).

    Article  Google Scholar 

  3. S. Takabatake and K. Ayukawa, Numerical study of two-dimensional peristaltic flows, J. Fluid Mech., 122, 439–465 (1982).

    Article  MATH  Google Scholar 

  4. M. Li and J. G. Brasseur, Nonsteady peristaltic transport in finite length tubes, J. Fluid Mech., 248, 129–151 (1993).

    Article  MATH  Google Scholar 

  5. H. Sato, T. Kawai, T. Fujita, and M. Okabe, Two-dimensional peristaltic flow in curved channels, Trans. Jpn. Soc. Mech. Eng. B, 66, 679–685 (2000).

    Article  Google Scholar 

  6. N. Ali, M. Sajid, and T. Hayat, Long wavelength flow analysis in a curved channel, Z. Naturforsch., 65a, 191–196 (2010).

    Google Scholar 

  7. N. Ali, M. Sajid, T. Javed, and Z. Abbas, Heat transfer analysis of peristaltic flow in a curved channel, Int. J. Heat Mass Transf., 53, 3319–3325 (2010).

    Article  MATH  Google Scholar 

  8. N. Ali, M. Sajid, Z. Abbas, and T. Javed, Non-Newtonian fluid flow induced by peristaltic waves in a curved channel, Eur. J. Mech.-B/Fluids, 5, 387–394 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Hayat, S. Noreen, and A. Alsaedi, Effect of an induced magnetic field on peristaltic flow of non-Newtonian fluid in a curved channel, J. Mech. Med. Biol., 12, 1250058 (1–26) (2012).

  10. T. Hayat, M. Javed, and A. A. Hendi, Peristaltic transport of viscous fluid in a curved channel with compliant walls, Int. J. Heat Mass Transf., 54, 1615–1621 (2011).

    Article  MATH  Google Scholar 

  11. J. V. Ramanamurthy, K. M. Prasad, and V. K. Narla, Unsteady peristaltic transport in curved channels, Phys. Fluids, 25, 091903(1–20) (2013).

  12. A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transf., 101, 718–725 (1979).

    Article  Google Scholar 

  13. A. Bejan, Second-law analysis in heat transfer, Energy Int. J., 5, 721–732 (1980).

    Article  Google Scholar 

  14. A. Bejan, Second-law analysis in heat transfer and thermal design, Adv. Heat Transf., 15, 1–58 (1982).

    Article  Google Scholar 

  15. A. Bejan, Entropy Generation Through Heat and Fluid Flow, John Wiley and Sons Inc., Canada (1994).

    Google Scholar 

  16. S. Mahmud and R. A. Fraser, Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates, Exergy, 2, 140–146 (2002).

    Article  Google Scholar 

  17. A. Z. Sahin, Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux, Int. J. Heat Mass Transf., 21, 1179–1187 (1996).

    Google Scholar 

  18. A. Z. Sahin, Second-law analysis in heat transfer, Int. J. Heat Mass Transf., 5, 720–732 (1980).

    Google Scholar 

  19. A. Bejan, Entropy Generation Minimization, CRC Press, Boca Raton, New York (1996).

    MATH  Google Scholar 

  20. A. Bejan, Convection Heat Transfer, John Wiley and Sons, New York (2004).

    MATH  Google Scholar 

  21. S. Paoletti, F. Rispoli, and E. Sciubba, Calculation of exergetic losses in compact heat exchanger passages, ASME AES, 10, 21–29 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Narla.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 2, pp. 428–434, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narla, V.K., Prasad, K.M. & Ramana Murthy, J.V. Second-Law Analysis of the Peristaltic Flow of an Incompressible Viscous Fluid in a Curved Channel. J Eng Phys Thermophy 89, 441–448 (2016). https://doi.org/10.1007/s10891-016-1394-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1394-8

Keywords

Navigation