Skip to main content
Log in

Investigation of the starting process in a Ludwieg tube

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The hypersonic Ludwieg tube Braunschweig (HLB) is a valve-controlled wind tunnel that has been designed for a Mach number of Ma =  5.9 and a Reynolds number range from 2.5 × 106 up to 2.5 × 107 1/m. The intermittent working principle implies an unsteady onset of flow, which leads to a delay of the time frame suitable for measurements as well as to heat loads different from steady flow conditions. This work numerically simulates the starting process. It determines whether the onset of flow leads to a significant temperature rise in the model surface which in turn impacts results gathered during measurement time. The flow field in the HLB is numerically rebuilt for two operating points including valve opening. The non-stationary flow around a hyperboloid/flare configuration in the test section is calculated for one operating point including surface heating. For laminar flow it is found that due to the short duration of the starting process no significant model heating affects results obtained during measurement time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AnsysTM, Inc. http://www.ansys.com

  2. Baehr H.D. and Stephan K. (2006). Heat and Mass Transfer, 2nd edn. Springer, Berlin

    Google Scholar 

  3. Bardina, J.E., Huang, P.G., Coakley, T.J.: Turbulence model validation, testing, and development. NASA Technical Memorandum 110446, Ames Research Center, Moffett Field, CA (1997)

  4. Ben-Dor G. (1992). Shock Wave Reflection Phenomena. Springer, New York

    MATH  Google Scholar 

  5. Estorf M. (2006). Image based heating rate calculation from thermographic data considering lateral heat conduction. Int. J. Heat Mass Transfer 49: 2545–2556

    Article  Google Scholar 

  6. Estorf, M., Radespiel, R., Heine, M., Müller-Eigner, R.: Der Hyperschallwindkanal Ludwiegrohr Braunschweig HLB. In: DGLR-Jahrbuch, vol. 1, pp. 661–670 (2003)

  7. Estorf, M., Wolf, T., Radespiel, R.: Experimental and numerical investigations on the operation of the Hypersonic Ludwieg Tube Braunschweig. In: Proceedings of the 5th European Symposium on Aerothermodynamics for Space Vehicles, November 8–11, 2004, Cologne, vol. SP-563, pp. 579–586. European Space Agency (2004)

  8. Gerhold, T.: Overview of the Hybrid RANS Code TAU. In: Kroll, N., Fassbender, J.K. (eds.) MEGAFLOW—Numerical Flow Simulation for Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89, pp. 81–92. Springer, Heidelberg (2005)

  9. Giles M.B. (1997). Stability analysis of numerical interface conditions in fluid–structure thermal analysis. Int. J. Numer. Methods Fluids 25(4): 421–436

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Hartig H.E. and Swanson C.E. (1938). ‘Transverse’ acoustic waves in rigid tubes. Phys. Rev. 54: 618–626

    Article  ADS  Google Scholar 

  11. Kallinderis Y., Khawaja A. and McMorris H. (1996). Hybrid prismatic/tetrahedral grid generation for viscous flows around complex geometries. AIAA J. 34(2): 291–298

    MATH  ADS  Google Scholar 

  12. Kim K.H., Kim C.K. and Rho O.H. (2001). Methods for the accurate computations of hypersonic flows, Part I: AUSMPW+ scheme. J. Comput. Phys. 174(1): 38–80

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Koppenwallner, G., Müller-Eigner, R., Friehmelt, H.: HHK Hochschul-Hyperschall-Kanal: Ein ‘Low-Cost’ Windkanal für Forschung und Ausbildung. In: DGLR-Jahrbuch, vol. 2, pp. 887–896 (1993)

  14. Kŏulović, D., Radespiel, R., Müller-Eigner, R.: Aerodynamic design parameters of a hypersonic Ludwieg tube nozzle. In: D.Z. et al. (eds.) Proceedings of the West East High Speed Flow Fields Conference. CIMNE, Barcelona, Spain (2002)

  15. Ludwieg, H.: Der Rohrwindkanal. Z. f. Flugwiss. 3, Nr. 7 pp. 206–216 (1955)

  16. Mack, A., Hannemann, V.: Validation of the unstructured DLR-TAU-code for hypersonic flows. AIAA Paper 2002-3111 (2002)

  17. Menter F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8): 1598–1605

    ADS  Google Scholar 

  18. Quirk J.J. (1994). A contribution to the great riemann solver debate. Int. J. Numer. Methods Fluids 18: 555–574

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Schwane, R.: Description of the testcase: MSTP workshop 1996 reentry aerothermodynamics and ground-to-flight extrapolation. Technical Report YPA/1889/RS, ESTEC, Noordwijk (1996)

  20. Shapiro A.H. (1954). The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. 2. The Ronald Press Company, New York

    Google Scholar 

  21. Sinha K., Mahesh K. and Candler G.V. (2003). Modeling shock unsteadiness in shock/turbulence interaction. Phys. Fluids 15(8): 2290–2297

    Article  ADS  Google Scholar 

  22. Sinha K., Mahesh K. and Candler G.V. (2005). Modeling the effect of shock unsteadiness in shock/turbulent boundary-layer interactions. AIAA J. 43(3): 586–594

    ADS  Google Scholar 

  23. Thomas P.D. and Lombard C.K. (1979). Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10): 1030–1037

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Toro E.F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wolf.

Additional information

Communicated by T. Colonius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, T., Estorf, M. & Radespiel, R. Investigation of the starting process in a Ludwieg tube. Theor. Comput. Fluid Dyn. 21, 81–98 (2007). https://doi.org/10.1007/s00162-006-0040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0040-z

Keywords

PACS

Navigation