Skip to main content
Log in

Asymptotics and numerical analysis for enzymatic auxiliary reactions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper we study the mathematical model of auxiliary (or coupled) reactions, a mechanism which describes several chemical reactions. In order to apply singular perturbation techniques, we determine an appropriate perturbation parameter \(\epsilon \) (which is related to the kinetic constants and initial conditions of the model), the inner and outer solutions and the matched expansions of the solutions, up to the first order in \(\epsilon \), in the total quasi-steady-state approximation (tQSSA) framework. The contribution of these expansions can be useful for the estimation of the kinetic parameters of the reaction by means of the interpolation of experimental data with the explicit approximations of the solutions. Some numerical results are discussed, showing the high reliability of the tQSSA with respect to the standard QSSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bersani, A., Bersani, E., Mastroeni, L.: Deterministic and stochastic models of enzymatic networks-applications to pharmaceutical research. Computer Math Appl 55(5), 879–888 (2008). Modeling and Computational Methods in Genomic Sciences

    Article  MathSciNet  MATH  Google Scholar 

  2. Bersani, A., Borri, A., Milanesi, A., Tomassetti, G., Vellucci, P.: Asymptotic analysis of the double phosphorylation mechanism, in a tqssa framework. Submitted to J. Math. Anal. Appl

  3. Bersani, A., Borri, A., Milanesi, A., Tomassetti, G., Vellucci, P.: A study case for the analysis of asymptotic expansions beyond the tqssa for inhibitory mechanisms in enzyme kinetics. Commun Appl Ind Math 10(1), 162–181 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Bersani, A., Borri, A., Milanesi, A., Tomassetti, G., Vellucci, P.: Uniform asymptotic expansions beyond the tqssa for the goldbeter-koshland switch. SIAM J Appl Math 80(3), 1123–1152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bersani, A., Borri, A., Milanesi, A., Vellucci, P.: Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics. Commun Appl Ind Math 8(1), 81–102 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bersani, A.M., Bersani, E., Dell’Acqua, G., Pedersen, M.G.: New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis-Menten paper. Contin Mech Thermodyn 27(4), 659–684 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bersani, A.M., Borri, A., Milanesi, A., Tomassetti, G., Vellucci, P.: Singular perturbation techniques and asymptotic expansions for some complex enzyme reactions. In: W. Lacarbonara, B. Balachandran, J. Ma, J. Tenreiro Machado, G. Stepan (eds.) Nonlinear Dynamics of Structures, Systems and Devices - Proceedings of the First International Nonlinear Dynamics Conference (NODYCON 2019), Volume I, pp. 43–53. Springer, Berlin, Heidelberg (2020)

  8. Bersani, A.M., Dell’Acqua, G.: Is there anything left to say on enzyme kinetic constants and quasi-steady state approximation? J Math Chem 50(2), 335–344 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bersani, A.M., Dell’Acqua, G., Tomassetti, G.: On stationary states in the double phosphorylation-dephosphorylation cycle. AIP Conference Proceedings 1389(1), 1208–1211 (2011)

    Article  ADS  Google Scholar 

  10. Borghans, J., de Boer, R., Segel, L.: Extending the quasi-steady state approximation by changing variables. Bull Math Biol 58, 43–63 (1996)

    Article  MATH  Google Scholar 

  11. Chen, L.Y., Goldenfeld, N., Oono, Y.: Renormalization group theory for global asymptotic analysis. Phys Rev Lett 73, 1311–1315 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chen, L.Y., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory. Phys Rev E 54, 376–393 (1996)

    Article  ADS  Google Scholar 

  13. Ciliberto, A., Capuani, F., Tyson, J.J.: Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLOS Comput Biol 3(3), 1–10 (2007)

    Article  MathSciNet  Google Scholar 

  14. Coluzzi, B., Bersani, A.M., Bersani, E.: An alternative approach to Michaelis-Menten kinetics that is based on the renormalization group. Math Biosci 299, 28–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cornish-Bowden, A.: Fundamentals of enzyme kinetics. Wiley-Blackwell Weinheim, Germany (2012)

    Google Scholar 

  16. Cornish-Bowden, A.: One hundred years of Michaelis-Menten kinetics. Perspect Sci 4, 3–9 (2015)

    Article  Google Scholar 

  17. Dell’Acqua, G., Bersani, A.M.: Bistability and the complex depletion paradox in the double phosphorylation-dephosphorylation cycle. In: BIOINFORMATICS 2011 – Proceedings International Conference on Bioinformatics Models, Methods and Algorithms, Roma, 26–29 gennaio 2011, pp. 55–65 (2011)

  18. Dell’Acqua, G., Bersani, A.M.: A perturbation solution of Michaelis-Menten kinetics in a "total" framework. J Math Chem 50(5), 1136–1148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dell’Acqua, G., Bersani, A.M.: Quasi-steady state approximations and multistability in the double phosphorylation-dephosphorylation cycle. In: Fred, A., Filipe, J., Gamboa, H. (eds.) Biomedical engineering systems and technologies, pp. 155–172. Springer, Berlin Heidelberg (2013)

    Chapter  Google Scholar 

  20. Dingee, J.W., Anton, A.B.: A new perturbation solution to the Michaelis-Menten problem. AIChE J 54(5), 1344–1357 (2008)

    Article  Google Scholar 

  21. Dvořák, I., Šiška, J.: Analysis of metabolic systems with complex slow and fast dynamics. Bull Math Biol 51(2), 255–274 (1989)

    Article  MATH  Google Scholar 

  22. Eilertsen, J., Schnell, S.: A kinetic analysis of coupled (or auxiliary) enzyme reactions. Bull Math Biol 80, 3154–3183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eilertsen, J., Stroberg, W., Schnell, S.: Characteristic, completion or matching timescales? an analysis of temporary boundaries in enzyme kinetics. J Theor Biol 481, 28–43 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J Diff Equ 31(1), 53–98 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Giorgio, I., dell’Isola, F., Andreaus, U., Alzahrani, F., Hayat, T., Lekszycki, T.: On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon. Biomech Model Mechanobiol 18(6), 1639–1663 (2019)

    Article  Google Scholar 

  26. Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J.H., Saito, K., Saeki, M., Shirouzu, M., Yokoyama, S., Konagaya, A.: A computational model on the modulation of mitogen-activated protein kinase (mapk) and akt pathways in heregulin-induced erbb signalling. Biochem J 373(2), 451–463 (2003)

    Article  Google Scholar 

  27. Heineken, F.G., Tsuchiya, H.M., Aris, R.: On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math Biosci 1, 95–113 (1967)

    Article  Google Scholar 

  28. Hoppensteadt, F.C.: Singular perturbations on the infinite interval. Trans Am Math Soc 123(2), 521–535 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khoo, C.F., Hegland, M.: The total quasi-steady state assumption: its justification by singular perturbation and its application to the chemical master equation. In: G.N. Mercer, A.J. Roberts (eds.) Proceedings of the 14th Biennial Computational Techniques and Applications Conference, CTAC-2008, ANZIAM J., vol. 50, pp. C429–C443 (2008)

  30. Kirkinis, E.: The renormalization group: A perturbation method for the graduate curriculum. SIAM Rev 54, 374–388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kumar, A., Josić, K.: Reduced models of networks of coupled enzymatic reactions. J Theor Biol 278(1), 87–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kwang-Hyun, C., Sung-Young, S., Hyun-Woo, K., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical modeling of the influence of rkip on the erk signaling pathway. In: Priami, C. (ed.) Computational methods in systems biology, pp. 127–141. Springer, Berlin Heidelberg (2003)

    Chapter  Google Scholar 

  33. Laidler, K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems. Can J Chem 33, 1614–1624 (1955)

    Article  Google Scholar 

  34. Lin, C.C., Segel, L.A.: Mathematics applied to deterministic problems in the natural sciences, vol. 1. SIAM, Philadelphia (1988)

  35. Lu, Y., Lekszycki, T.: A novel coupled system of non-local integro-differential equations modelling young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing. Zeit Angew Math Phys 67(5), 111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math Mech Solids 22(10), 1997–2010 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lu, Y., Lekszycki, T.: New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption. Contin Mech Thermodyn 30(5), 995–1009 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. MacNamara, S., Burrage, K.: Krylov and steady-state techniques for the solution of the chemical master equation for the mitogen-activated protein kinase cascade. Numer Algorithm 51(3), 281–307 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Murray, J.: Asymptotic analysis. Springer-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  40. Murray, J.: Mathematical biology: an introduction. Springer-Verlag, New York (2002)

    Book  MATH  Google Scholar 

  41. Nayfeh, A.: Perturbation Methods. Wiley, NJ (2004)

    Google Scholar 

  42. Nguyen, A.H., Fraser, S.J.: Geometrical picture of reaction in enzyme kinetics. J Chem Phys 91(1), 186–193 (1989)

    Article  ADS  Google Scholar 

  43. Palsson, B.O.: On the dynamics of the irreversible Michaelis-Menten reaction mechanism. Chem Eng Sci 42(3), 447–458 (1987)

    Article  Google Scholar 

  44. Palsson, B.O., Lightfoot, E.N.: Mathematical modelling of dynamics and control in metabolic networks. i. on Michaelis-Menten kinetics. J Theor Biol 111(2), 273–302 (1984)

    Article  MathSciNet  Google Scholar 

  45. Palsson, B.O., Palsson, H., Lightfoot, E.N.: Mathematical modelling of dynamics and control in metabolic networks. iii. linear reaction sequences. J Theor Biol 113(2), 231–259 (1985)

    Article  MathSciNet  Google Scholar 

  46. Pedersen, M.G., Bersani, A.M.: Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J Math Biol 60(2), 267–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pedersen, M.G., Bersani, A.M., Bersani, E.: The total quasi-steady-state approximation for fully competitive enzyme reactions. Bull Math Biol 69(1), 433–457 (2006)

    Article  MATH  Google Scholar 

  48. Pedersen, M.G., Bersani, A.M., Bersani, E.: Quasi steady-state approximations in complex intracellular signal transduction networks - a word of caution. J Math Chem 43(4), 1318–1344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pedersen, M.G., Bersani, A.M., Bersani, E., Cortese, G.: The total quasi-steady-state approximation for complex enzyme reactions. Math Computer Simul 79(4), 1010–1019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rice, O.K.: Conditions for a steady state in chemical kinetics. J Phys Chem 64(12), 1851–1857 (1960)

    Article  MathSciNet  Google Scholar 

  51. Roberts, A.J.: Model emergent dynamics in complex systems. SIAM, Philadelphia (2015)

    MATH  Google Scholar 

  52. Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., Tyson, J.J.: Antagonism and bistability in protein interaction networks. J Theor Biol 250(1), 209–218 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schnell, S., Maini, P.: Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations. Math Computer Model 35(1–2), 137–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Segel, L.A.: Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  55. Segel, L.A.: On the validity of the steady state assumption of enzyme kinetics. Bull Math Biol 50(6), 579–593 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. Segel, L.A., Slemrod, M.: The quasi steady-state assumption: a case study in pertubation. Siam Rev 31, 446–477 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  57. Storer, A.C., Cornish-Bowden, A.: The kinetics of coupled enzyme reactions. Biochem J 141, 205–209 (1974)

    Article  Google Scholar 

  58. Tikhonov, A.: On the dependence of the solutions of differential equations on a small parameter (in russian). Mat Sb (NS) 22(2), 193–204 (1948)

    Google Scholar 

  59. Tikhonov, A.: On a system of differential equations containing parameters (in russian). Mat Sb (NS) 27, 147–156 (1950)

    Google Scholar 

  60. Tzafriri, A., Edelman, E.: The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J Theor Biol 226(3), 303–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Tzafriri, A.R., Edelman, E.R.: Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant. J Theor Biol 245(4), 737–748 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Udema, I.I.: Kinetic parameters from linear plot vis-á-vis condition for validity of various quasi steady state approximations. MOJ Bioorganic Org Chem 2(2), 72–81 (2018)

    Google Scholar 

  63. Udema, I.I.: Derivable equations and issues often ignored in the original Michaelis-Menten mathematical formalism. Asian J Res Biochem 7(4), 1–13 (2019)

    Google Scholar 

  64. Udema, I.I.: Total enzyme-substrate complex which includes product-destined emzyme-substrate complex. Asian J Res Biochem 5(4), 1–7 (2019)

    Google Scholar 

  65. Vasil’eva, A.B.: Asymptotic behaviour of solutions to certain problems involving non-linear differential equations containing a small parameter multiplying the highest derivatives (in russian). Rus Math Surv 18(3), 13–84 (1963)

    Article  MATH  Google Scholar 

  66. Wasow, W.: Asymptotic expansions for ordinary differential equations. Wiley, NJ (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author is member of the Gruppo Nazionale per la Fisica Matematica (GNFM) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Maria Bersani.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bersani, A.M., Borri, A. & Tosti, M.E. Asymptotics and numerical analysis for enzymatic auxiliary reactions. Continuum Mech. Thermodyn. 33, 851–872 (2021). https://doi.org/10.1007/s00161-020-00962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00962-5

Keywords

Navigation