Skip to main content
Log in

New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

One century after the seminal work by Leonor Michaelis and Maud Menten devoted to the theoretical study of the enzymatic reactions, in this paper, we give an overview of the most recent trends concerning the mathematical modeling of several enzymatic mechanisms, focusing on its asymptotic analysis, which needs the use of advanced mathematical tools, such as center manifold theory, normal forms, and bifurcation theory. Moreover, we present some perspectives, linking the models here presented with similar models, arising from different research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albe K.R., Butler M.H., Wright B.E.: Cellular concentration of enzymes and their substrates. J. Theor. Biol. 143, 163–195 (1990)

    Google Scholar 

  2. Alberty R.A.: Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements. J. Theor. Biol. 254, 156–163 (2008)

    MathSciNet  Google Scholar 

  3. Alessandroni S., Andreaus U., dell’Isola F., Porfiri M.: Piezo-ElectroMechanical (PEM) Kirchhoff–Love plates. Eur. J. Mech. A Solids 23, 689–702 (2004)

    MATH  Google Scholar 

  4. Alessandroni S., Andreaus U., dell’Isola F., Porfiri M.: A passive electric controller for multimodal vibrations of thin plates. Comput. Struct. 83, 1236–1250 (2005)

    Google Scholar 

  5. Andreaus U., dell’Isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10, 625–659 (2004)

    MATH  Google Scholar 

  6. Babskii V.G., Yu Zhukov M., Yudovich V.I.: Mathematical Theory of Electrophoresis. Consultants Bureau, New York (1989)

    Google Scholar 

  7. Barik D., Paul M.R., Baumann W.T., Cao Y., Tyson J.J.: Stochastic simulation of enzyme-catalized reactions with disparate time scales. Biophys. J. 95, 3563–3574 (2008)

    ADS  Google Scholar 

  8. Batra R.C., dell’Isola F., Vidoli S., Vigilante D.: Multimode vibration suppression with passive two-terminal distributed network incorporating piezoceramic transducers. Int. J. Solids Struct. 42, 3115–3132 (2005)

    MATH  Google Scholar 

  9. Bender C.M., Orszag S.A.: Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer, New York (1999)

    MATH  Google Scholar 

  10. Bersani, A.M., Bersani, E., Mastroeni, L.: Deterministic and stochastic models of enzymatic networks—applications to pharmaceutical research. Comput. Math. Appl., special issue: Tadei, R., Bellomo, N. (eds.) “Modeling and Computational Methods in Genomic Sciences”, vol. 55, pp. 879–888 (2008)

  11. Bersani A.M., Bersani E., Mastroeni L.: Modeling the action of drugs on cellular enzymes by means of optimal control techniques. J. Math. Chem. 49, 776–795 (2011)

    MATH  MathSciNet  Google Scholar 

  12. Bersani A.M., Carlini E., Lanucara P., Rorro M., Ruggiero V.: Application of optimal control techniques and advances computing to the study of enzyme kinetics. Math. Comput. Simul. (MATCOM) 81, 705–716 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Bersani A.M., Dell’Acqua G.: Asymptotic expansions in enzyme reactions with high enzyme concentrations. Math. Methods Appl. Sci. 34, 1954–1960 (2011)

    MATH  MathSciNet  Google Scholar 

  14. Bersani A.M., Dell’Acqua G.: Is there anything left to say on enzyme kinetic constants and quasi-steady state approximation?. J. Math. Chem. 50, 335–344 (2012)

    MATH  MathSciNet  Google Scholar 

  15. Bersani, A.M., Dell’Acqua, G., Tomassetti, G.: On stationary states in the double phosphorylation–dephosphorylation cycle. In: AIP Conference Proceedings 1389, Numerical Analysis and Applied Mathematics ICNAAM, Halkidiki (Greece), 19–25 September 2011, pp. 1208–1211 (2011)

  16. Bisswanger H.: Enzyme Kinetics. Principles and Methods. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  17. Blütghen N.: Sequestration shapes the response of signal transduction cascades. IUMBM Life 58, 659–663 (2006)

    Google Scholar 

  18. Blütghen N., Bruggermann F.J., Legewie S., Herzel H., Westerhoff H.V., Kholodenko B.N.: Effects of sequestration on signal transduction cascades. FEBS J. 273, 895–906 (2006)

    Google Scholar 

  19. Bodenstein M.Z.: Eine theorie der photochemischen reaktionsgeschwindigkeiten. Z. Phys. Chem. 85, 329–397 (1913)

    Google Scholar 

  20. Borghans J., de Boer R., Segel L.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)

    MATH  Google Scholar 

  21. Briggs G.E., Haldane J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)

    Google Scholar 

  22. Carr J.: Applications of Centre Manifold Theory, Applied Mathematics Sciences, vol. 35. Springer, New York (1981)

    Google Scholar 

  23. Cazzani A., Rovati M.: Sensitivity analysis and optimum design of elastic–plastic structural systems. Meccanica 26, 173–178 (1991)

    MATH  Google Scholar 

  24. Cazzani A., Garusi E., Tralli A., Atluri S.N.: A four-node hybrid assumed-strain finite element for laminated composite plates. Comput. Mater. Contin. 2, 23–38 (2005)

    MATH  Google Scholar 

  25. Chapman D.L., Underhill L.K.: The interaction of chlorine and hydrogen. The influence of mass. J. Chem. Soc. Trans. 103, 496–508 (1913)

    Google Scholar 

  26. Chen L.Y., Goldenfeld N.D., Oono Y.: The renormalization group and singular perturbations: multiple-scales, boundary layers and reductive perturbation theory. Phys. Rev. E 54, 376–394 (1996)

    ADS  Google Scholar 

  27. Chickarmane V., Kholodenko B.N., Sauro H.M.: Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. J. Theor. Biol. 244, 68–76 (2006)

    MathSciNet  Google Scholar 

  28. Cho, K.-H., Shin, S.-Y., Kim, H.W., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, C. (ed.). Computational Methods in Systems Biology, First International Workshop, CMSB 2003, Rovereto, Italy, February 24–26, 2003, Proceedings, Lecture Notes in Computer Science 2602. Springer, New York (2003)

  29. Ciliberto A., Capuani F., Tyson J.J.: Modeling networks of coupled anzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3, 463–472 (2007)

    MathSciNet  Google Scholar 

  30. Contrafatto L., Cuomo M.: A framework of elasticplastic damaging model for concrete under multiaxial stress states. Int. J. Plast. 22, 2272–2300 (2006)

    MATH  Google Scholar 

  31. Contrafatto L., Cuomo M.: A globally convergent numerical algorithm for damaging elasto-plasticity based on the Multiplier method. Int. J. Numer. Methods Eng. 63, 1089–1125 (2005)

    MATH  MathSciNet  Google Scholar 

  32. Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    MATH  MathSciNet  Google Scholar 

  33. Cornish-Bowden A.: Fundamentals of Enzyme Kinetics, 3rd edn. Portland Press, London (2004)

    Google Scholar 

  34. Cuomo M., Contrafatto L.: Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation. Int J. Solids Struct. 37, 3935–3964 (2000)

    MATH  Google Scholar 

  35. Cuomo M., Ventura G.: Complementary energy approach to contact problems based on consistent augmented Lagrangian regularization. Math. Comput. Model. 28, 185–204 (1998)

    MATH  Google Scholar 

  36. Dell’Acqua G., Bersani A.M.: A perturbation solution of Michaelis–Menten kinetics in a “total” framework. J. Math. Chem. 50, 1136–1148 (2012)

    MATH  MathSciNet  Google Scholar 

  37. Dell’Acqua G., Bersani A.M.: Quasi-steady state approximations and multistability in the double phosphorylation-dephosphorylation cycle. Commun. Comput. Inf. Sci. 273, 155–173 (2012)

    Google Scholar 

  38. Dell’Acqua, G., Bersani, A.M.: Bistability and the complex depletion paradox in the double phosphorylation–dephosphorylation cycle. In: Proceedings BIOINFORMATICS 2011, pp. 55–65 (2012)

  39. dell’Isola F.: Linear growth of a liquid droplet divided from its vapour by a “soap bubble”-like fluid interface. Int. J. Eng. Sci. 27, 1053–1067 (1989)

    MATH  MathSciNet  Google Scholar 

  40. dell’Isola F., Porfiri M., Vidoli S.: Piezo-electromechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers. Comptes Rendus Mec. 331, 69–76 (2003)

    MATH  ADS  Google Scholar 

  41. dell’Isola F., Rosa L., Wozniak C.: Dynamics of solids with micro periodic nonconnected fluid inclusions. Arch. Appl. Mech. 67, 215–228 (1997)

    MATH  Google Scholar 

  42. dell’Isola F., Rosa L., Wozniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 165–182 (1998)

    MATH  MathSciNet  Google Scholar 

  43. dell’Isola F., Wozniak C.: On phase transition layers in certain micro-damaged two-phase solids. Int. J. Fract. 83, 175–189 (1997)

    Google Scholar 

  44. dell’Isola F., Wozniak C.: On continuum modelling the interphase layers in certain two-phase elastic solids. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 77, 519–526 (1997)

    MATH  MathSciNet  ADS  Google Scholar 

  45. Deville R.E.L., Harkin A., Holzer M., Josic K., Kaper T.J.: Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Physica D Nonlinear Phenom. 237, 1029–1052 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  46. Dingee J.W., Anton A.B.: A new perturbation solution to the Michaelis–Menten problem. AIChE J. 54, 1344–1357 (2008)

    Google Scholar 

  47. Dvořák I., Šiška J.: Analysis of metabolic systems with complex slow and fast dynamics. Bull. Math. Biol. 51, 255–274 (1989)

    MATH  Google Scholar 

  48. Eremeev V.A., Freidin A.B., Sharipova L.L.: Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. Dokl. Phys. 48, 359–363 (2003)

    MathSciNet  ADS  Google Scholar 

  49. Eremeyev V.A., Pietraszkiewicz W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74, 67–86 (2004)

    MATH  MathSciNet  Google Scholar 

  50. Eremeyev V.A., Pietraszkiewicz W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59, 1395–1412 (2011)

    MATH  MathSciNet  ADS  Google Scholar 

  51. Fabrini R., Bocedi A., Dawood K.F., Turella P., Stella L., Parker M.W., Pedersen J.Z., Federici G., Antonini G., Ricci G.: The extended catalysis of glutathione transferase. FEBS Lett. 585, 341–345 (2010)

    Google Scholar 

  52. Fenichel N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    MATH  MathSciNet  ADS  Google Scholar 

  53. Fersht A.R.: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis. Freeman, New York (1999)

    Google Scholar 

  54. Flach E.H., Schnell S.: Use and abuse of the quasi-steady-state approximation. IEE Proc. Syst. Biol. 153, 187–191 (2006)

    Google Scholar 

  55. Gattulli V., Di Fabio F., Luongo A.: Nonlinear tuned mass damper for self-excited oscillations, wind and structures. Int. J. 7, 251–264 (2004)

    Google Scholar 

  56. Goldbeter A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  57. Goldbeter A., Koshland D.E.: An amplified sensitivity arising from covalent modification in biological system. Proc. Natl. Acad. Sci. 78, 6840–6844 (1981)

    MathSciNet  ADS  Google Scholar 

  58. Goldenfeld, N.D.: Lectures On Phase Transitions and the Renormalization Group, Frontiers in Physics. Perseus Books, New York (1992)

  59. Goudar C.T., Harris S.K., McInerney M.J., Suflita J.M.: Progress curve analysis for enzyme anf microbial kinetic reactions using explicit solutions based on the Lambert W function. J. Microbiol. Methods 59, 317–326 (2004)

    Google Scholar 

  60. Gross T., Feudel U.: Generalized models as an universal approach to the analysis of nonlinear dynamical systems. Phys. Rev. E 73, 016205–016214 (2006)

    ADS  Google Scholar 

  61. Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematics Sciences, vol. 42. Springer, New York (1983)

    Google Scholar 

  62. Gunawardena J.: Some lessons about models from Michaelis and Menten. MBoC 23, 517–519 (2012)

    Google Scholar 

  63. Hadeler K.P., Jukić D., Sabo K.: Least-squares problems for Michaelis–Menten kinetics. Math. Methods Appl. Sci. 30, 1231–1241 (2007)

    MATH  MathSciNet  ADS  Google Scholar 

  64. Hammes G.G.: Thermodynamics and Kinetics for the Biological Sciences. Wiley-Interscience, New York (2000)

    Google Scholar 

  65. Hanson S.M., Schnell S.: Reactant stationary approximation in enzyme kinetics. J. Phys. Chem. 112, 8654–8658 (2008)

    Google Scholar 

  66. Hatakeyama M., Kimura S., Naka T., Kawasaki T., Yumoto N., Ichikawa M., Kim J.H., Saito K., Saeiki K.M., Shirouzu M., Yokoyama S., Konagaya A.: A computational model on the modulation of mitogen-activated protein kinae (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 373, 451–463 (2003)

    Google Scholar 

  67. Heineken F.G., Tsushiya H.M., Aris R.: On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math. Biosci. 1, 95–113 (1967)

    Google Scholar 

  68. Hek G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)

    MATH  MathSciNet  Google Scholar 

  69. Henri V.: Recherches sur la loi de l’action de la sucrase. C. R. Hebd. Acad. Sci. 133, 891–899 (1901)

    Google Scholar 

  70. Henri V.: Über das Gesetz der Wirkung des Invertins. Z. Phys. Chem. 39, 194–216 (1901)

    Google Scholar 

  71. Henri V.: Théorie générale de l’action de quelques diastases. C. R. Hebd. Acad. Sci. 135, 916–919 (1902)

    Google Scholar 

  72. Huang C., Ferrell J.J.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 9, 10078–10083 (1996)

    Google Scholar 

  73. Johnson K.A., Goody R.S.: The original michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264–8269 (2011)

    Google Scholar 

  74. Keener J., Sneyd J.: Mathematical Physiology. Springer, New York (1998)

    MATH  Google Scholar 

  75. Kholodenko B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen–activated protein kinase cascade. Eur. J. Biochem. 267, 1583–1588 (2000)

    Google Scholar 

  76. Khoo C.F., Hegland M.: The total quasi-steady state assumption: its justification by singular perturbation and its application to the chemical master equation. ANZIAM J. 50, C429–C443 (2008)

    MathSciNet  Google Scholar 

  77. Kirkinis E.: The renormalization group: a perturbation method for the graduate curriculum. SIAM Rev. 54, 374–388 (2011)

    MathSciNet  Google Scholar 

  78. Kumar A., Josic̀ K.: Reduced models of networks of coupled enzymatic reactions. J. Theor. Biol. 278, 87–106 (2011)

    MATH  MathSciNet  Google Scholar 

  79. Laidler K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem. 33, 1614–1624 (1955)

    Google Scholar 

  80. Legewie S., Schoeberl B., Bluthgen N., Herzel H.: Competing docking interactions can bring about bistability in the MAPK cascade. Biophys. J. 93, 2279–2288 (2007)

    ADS  Google Scholar 

  81. Lehninger A.L.: Principles of Biochemistry. W.H. Freeman & Company, New York (2008)

    Google Scholar 

  82. Lekszycki T., dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 92, 426–444 (2012)

    MATH  MathSciNet  Google Scholar 

  83. Lin C.C., Segel L.A.: Mathematics Applied to Deterministic Problems in the Natural Sciences. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988)

    MATH  Google Scholar 

  84. Liu P., Kevrekidis I.G., Schvartsman S.Y.: Substrate-dependent control of ERK phosphorylation can lead to oscillations. Biophys. J. 101, 2572–2581 (2011)

    ADS  Google Scholar 

  85. Luongo A.: Transfer matrix-perturbation approach to the buckling analysis of nonlinear periodic structures. Proc. Eng. Mech. 1, 505–508 (1995)

    Google Scholar 

  86. Luongo, A.: On the use of the multiple scale method in solving difficult bifurcation problems. In: The 4th Canadian Conference on Nonlinear Solid Mechanics (CanCNSM 2013) McGill University, July 23–26, 2013 Montreal, Canada

  87. Luongo A., D’Annibale F.: Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads. Int. J. Nonlinear Mech. 55, 128–139 (2013)

    ADS  Google Scholar 

  88. Luongo A., Di Egidio A.: Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn. 41, 171–190 (2005)

    MATH  MathSciNet  Google Scholar 

  89. Luongo A., Di Egidio A., Paolone A.: Multiple time scale analysis for bifurcation from a multiple-zero eigenvalue. AIAA J. 41, 1143–1150 (2003)

    ADS  Google Scholar 

  90. Luongo A., Di Egidio A., Paolone A.: Multiscale analysis of defective multiple-Hopf bifurcations. Comput. Struct. 82, 2705–2722 (2004)

    MathSciNet  Google Scholar 

  91. Luongo A., Di Egidio A., Paolone A.: Qualitative analysis of classes of motion for multiresonant systems I. An algebraic method. Acta Mech. 174, 91–107 (2005)

    MATH  Google Scholar 

  92. Luongo A., Di Egidio A., Paolone A.: Qualitative analysis of classes of motion for multiresonant systems II. A geometrical method. Acta Mech. 174, 109–124 (2005)

    MATH  Google Scholar 

  93. Luongo, A., Gattulli, V., Di Fabio, F.: 1:1 resonant Hopf bifurcations in slender space structures with tuned mass dampers. In: Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, vol. 2, pp. 939–945 (2001)

  94. Luongo A., Paolone A.: Multiple scale analysis for divergence-Hopf bifurcation of imperfect symmetric systems. J. Sound Vib. 218, 527–539 (1998)

    MATH  ADS  Google Scholar 

  95. Luongo A., Paolone A., Di Egidio A.: Sensitivities and linear stability analysis around a double-zero eigenvalue. AIAA J. 38, 702–710 (2000)

    ADS  Google Scholar 

  96. Luongo A., Paolone A., Di Egidio A.: Multiple time scales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34, 269–291 (2003)

    MATH  MathSciNet  Google Scholar 

  97. Luongo A., Pignataro M.: Multiple interaction and localization phenomena in the postbuckling of compressed thin-walled members. AIAA J. 26, 1395–1402 (1988)

    MATH  ADS  Google Scholar 

  98. Luongo A., Vestroni F.: Bifurcations and stability of amplitude modulated planar oscillations of an orbiting string with internal resonances. Nonlinear Dyn. 9, 305–325 (1996)

    MathSciNet  Google Scholar 

  99. Luongo A., Zulli D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67, 71–87 (2011)

    MathSciNet  Google Scholar 

  100. Luongo A., Zulli D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn. 70, 2049–2061 (2012)

    MathSciNet  Google Scholar 

  101. Luongo A., Zulli D., Piccardo G.: Analytical and numerical approaches to nonlinear galloping of internally-resonant suspended cables. J. Sound Vib. 315, 375–393 (2008)

    ADS  Google Scholar 

  102. MacNamara S., Bersani A.M., Burrage K., Sidje R.B.: Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys. 129, 095105-1–095105-13 (2008)

    ADS  Google Scholar 

  103. MacNamara S., Burrage K.: Krylov and steady-state techniques for the solution of the chemical master equation for the mitogen-activated protein kinase cascade. Numer. Algorithms 51, 281–307 (2009)

    MATH  MathSciNet  ADS  Google Scholar 

  104. Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61, 2196–2211 (2013)

    MathSciNet  ADS  Google Scholar 

  105. Madeo A., George D., Lekszycki T., Nierenberger M., Remond Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mec. 340, 575–589 (2012)

    ADS  Google Scholar 

  106. Madeo A., George D., Remond Y.: Second-gradient models accounting for some effects of microstructure on remodelling of bones reconstructed with bioresorbable materials. Comput. Methods Biomech. Biomed. Eng. 16, 260–261 (2013)

    Google Scholar 

  107. Madeo A., Lekszycki T., dell’Isola F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus Mec. 339, 625–640 (2011)

    ADS  Google Scholar 

  108. Markevich N.I., Hoek J.B., Kholodenko B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell. Biol. 164, 353–359 (2004)

    Google Scholar 

  109. Michaelis, L., Menten, M.L.: Die kinetik der invertinwirkung, Biochem. Z. 49, 333–369 English translation: R.S. Goody, K.A. Johnson, The Kinetics of Invertase Action, http://path.upmc.edu/divisions/chp/PDF/Michaelis--Menten_Kinetik (1913)

  110. Moles C.G., Mendes P., Banga J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003)

    Google Scholar 

  111. Morales M.F., Goldman D.E.: A note on the differential equation of simple enzyme kinetics. J. Am. Chem. Soc. 77, 6069–6070 (1955)

    Google Scholar 

  112. Murray J.D.: Mathematical Biology: An Introduction. Springer, NewYork (2002)

    Google Scholar 

  113. Nayfeh A.H.: Perturbation Methods. Wiley, New York (2000)

    MATH  Google Scholar 

  114. Nayfeh A.H.: Method of Normal Forms. Wiley, New York (2011)

    MATH  Google Scholar 

  115. Nguyen A.H., Fraser S.J.: Geometrical picture of reaction in enzyme kinetics. J. Chem. Phys. 91, 186–193 (1989)

    ADS  Google Scholar 

  116. Nishiura, Y.: Far-from-Equilibrium Dynamics, Translations of Mathematical Monographs, vol. 209, American Mathematical Society, Providence (1999)

  117. Noethen L., Walcher S.: Quasi-steady state in Michaelis–Menten system. Nonlinear Anal. 8, 1512–1535 (2007)

    MATH  MathSciNet  Google Scholar 

  118. O’Malley R.E.: Introduction to Singular Perturbation. Academic Press, Amsterdam (1974)

    Google Scholar 

  119. Ortega F., Garces J.L., Mas F., Kholodenko B.N., Cascante M.: Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements. FEBS J. 273, 3915–3926 (2006)

    Google Scholar 

  120. Ouellet L., Laidler K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems: II. The case of two enzyme-substrate complexes. Can. J. Chem. 34, 146–150 (1956)

    Google Scholar 

  121. Palsson B.O.: On the dynamics of the irreversible Michaelis–Menten reaction mechanism. Chem. Eng. Sci. 42, 447–458 (1987)

    Google Scholar 

  122. Palsson B.O., Lightfoot E.N.: Mathematcal modelling of dynamics and control in metabolic networks. I. Michaelis–Menten kinetics. J. Theor. Biol. 111, 273–302 (1984)

    MathSciNet  Google Scholar 

  123. Pasca M., Vestroni F., Luongo A.: Stability and bifurcations of transversal motions of an orbiting string with a longitudinal control force. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 76, 337–340 (1996)

    MATH  Google Scholar 

  124. Pedersen M.G., Bersani A.M., Bersani E.: The total quasi steady-state approximation for fully competitive enzyme reactions. Bull. Math. Biol. 69, 433–457 (2005)

    MathSciNet  Google Scholar 

  125. Pedersen M.G., Bersani A.M., Bersani E., Cortese G.: The total quasi-steady state approximation for complex enzyme reactions. Math. Comput. Simul. (MATCOM) 79, 1010–1019 (2008)

    MATH  MathSciNet  Google Scholar 

  126. Pedersen M.G., Bersani A.M., Bersani E.: Quasi steady-state approximations in intracellular signal transduction—a word of caution. J. Math. Chem. 43, 1318–1344 (2008)

    MATH  MathSciNet  Google Scholar 

  127. Pedersen M.G., Bersani A.M.: Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol. 60, 267–283 (2010)

    MATH  MathSciNet  Google Scholar 

  128. Porfiri M., dell’Isola F., Frattale Mascioli F.N.: Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. Int. J. Circuit Theory Appl. 32, 167–198 (2004)

    MATH  Google Scholar 

  129. Porfiri M., dell’Isola F., Santini E.: Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control. Int. J. Appl. Electromagn. Mech. 21, 69–87 (2005)

    Google Scholar 

  130. Price N.C., Stevens L.: Fundamentals of Enzymology. Oxford University Press, Oxford (1989)

    Google Scholar 

  131. Qiao L., Nachbar R.B., Kevrekidis I.G., Shvartsman S.Y.: Bistability and oscillations in the Huang–Ferrell model of MAPK signaling. PLoS Comput. Biol. 3, 1819–1826 (2007)

    MathSciNet  Google Scholar 

  132. Quiligotti S., Maugin G., dell’Isola F.: An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech. 160, 45–60 (2003)

    MATH  Google Scholar 

  133. Raccah, E.: Applicazione delle tecniche del gruppo di rinormalizzazione alle cinetiche enzimatiche, Graduation Thesis in Physics, Sapienza Università di Roma (2012)

  134. Rand R.H., Armbruster D.: Perturbation Methods, Bifurcation Theory and Computer Algebra, Applied Mathematics Sciences, vol. 65. Springer, New York (1987)

    Google Scholar 

  135. Rinaldi, A.: Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. Phys. Rev. E (Stat. Nonlin. Soft Matter Phys.) 83, 046126-1–10 (2011)

  136. Rinaldi A.: A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage Mech. 18, 233–257 (2009)

    Google Scholar 

  137. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices, ZAMM, doi:10.1002/zamm.201300028 (2013)

  138. Rodriguez-Fernandez M., Mendes P., Banga J.R.: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83, 248–265 (2006)

    Google Scholar 

  139. Rubinow S.I., Lebowitz J.L.: Time-dependent Michaelis–Menten kinetics for an enzyme-substrate-inhibitor system. J. Am. Chem. Soc. 92, 3888–3893 (1970)

    Google Scholar 

  140. Ruelle D.: Chaotic Evolution and Strange Attractors, Lezioni Lincee. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  141. Sabouri-Ghomi M., Ciliberto A., Kar S., Novak B., Tyson J.J.: Antagonism and bistability in protein interaction networks. J. Theor. Biol. 250, 209–218 (2008)

    MathSciNet  Google Scholar 

  142. Salazar C., Höfer T.: Kinetic models of phosphorylation cycles: a systematic approach using the rapid-equilibrium approximation for protein–protein interactions. BioSystems 83, 195–206 (2006)

    Google Scholar 

  143. Schauer M., Heinrich R.: Analysis of the quasi-steady-state approximation for one-substrate reaction. J. Theor. Biol. 79, 425–442 (1979)

    Google Scholar 

  144. Schnell S., Maini P.K.: Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–499 (2000)

    Google Scholar 

  145. Schnell S., Maini P.K.: Enzyme kinetics far from the standard quasi-steady state and equilibrium approximation. Math. Comput. Model. 35, 137–144 (2002)

    MATH  MathSciNet  Google Scholar 

  146. Schnell S., Maini P.K.: A century of enzyme kinetics. Reliability of the KM and vmax estimates. Comments Theor. Biol. 8, 169–187 (2003)

    Google Scholar 

  147. Schnell S., Mendoza C.: A closed-form solution for time-dependent enzyme kinetic. J. Theor. Biol. 187, 207–212 (1997)

    Google Scholar 

  148. Schnell S., Mendoza C.: Time-dependent closed form solutions for fully competitive enzyme reactions. Bull. Math. Biol. 62, 321–336 (2000)

    Google Scholar 

  149. Segel L.A.: Modeling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  150. Segel L.A.: On the validity of the steady-state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593 (1988)

    MATH  MathSciNet  Google Scholar 

  151. Segel L.A., Slemrod M.: The quasi steady-state assumption: a case study in pertubation. SIAM Rev. 31, 446–477 (1989)

    MATH  MathSciNet  Google Scholar 

  152. Sols, A., Marco, R.: Concentrations of metabolites and binding sites, Implications in metabolic regulation, Curr. Top. Cell. Regul., 2 eds. B. Horecker and E. Stadtman, pp. 227–273 (1970)

  153. Srere P.A.: Enzyme concentrations in tissues. Science 158, 936–937 (1967)

    ADS  Google Scholar 

  154. Steuer R., Gross T., Selbig J., Blasius B.: Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci. 103, 11868–11874 (2006)

    ADS  Google Scholar 

  155. Straus O.H., Goldstein A.: Zone behavior of enzymes. J. Gen. Physiol. 26, 559–585 (1943)

    Google Scholar 

  156. Swoboda P.A.T.: The kinetics of enzyme action. Biochim. Biophys. Acta 23, 70–80 (1957)

    Google Scholar 

  157. Swoboda P.A.T.: The kinetics of enzyme action, II. The terminal phase of the reaction. Biochim. Biophys. Acta 25, 132–135 (1957)

    Google Scholar 

  158. Tikhonov, A.N.: Systems of differential equations with small parameters of the derivatives. Math. Sb. 31, 575–586 (in Russian) (1952)

  159. Toti P., Petri A., Pelaia V., Osman A.M., Paoloni M., Bauer C.: A linearization method for low catalytic activity enzyme kinetic analysis. Biophys. Chem. 114, 245–251 (2005)

    Google Scholar 

  160. Tzafriri A.R.: Michaelis–Menten kinetics at high enzyme concentrations. Bull. Math. Biol. 65, 1111–1129 (2003)

    Google Scholar 

  161. Tzafriri A.R., Edelman E.R.: The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226, 303–313 (2004)

    MathSciNet  Google Scholar 

  162. Tzafriri A.R., Edelman E.R.: Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis–Menten constant. J. Theor. Biol. 245, 737–748 (2007)

    MathSciNet  Google Scholar 

  163. Van Slyke D.D., Cullen G.E.: The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180 (1914)

    Google Scholar 

  164. Varón R., Garcia-Moreno M., Masiá-Pérez J., García-Molina F., García-Cánovas F., Arias E., Arribas E., García-Sevilla F.: An alternative analysis of enzyme systems based on the whole reaction time: evaluation of the kinetic parameters and initial enzyme concentration. J. Math. Chem. 42, 789–813 (2007)

    MATH  MathSciNet  Google Scholar 

  165. Vidoli S., dell’Isola F.: Modal coupling in one-dimensional electromechanical structured continua. Acta Mech. 141, 37–50 (2000)

    MATH  Google Scholar 

  166. Wang L., Sontag E.D.: On the number of steady states in a multiple futile cycle. J. Math. Biol. 57, 29–52 (2008)

    MATH  MathSciNet  Google Scholar 

  167. Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, vol. 2. Springer, New York (1990)

    Google Scholar 

  168. Xing J., Chen J.: The Goldbeter–Koshland switch in the first-order region and its response to dynamic disorder. PLOS One 3, e2140 (2008)

    ADS  Google Scholar 

  169. Yeremin E.N.: The Foundations of Chemical Kinetics. MIR Pub., Moscow (1979)

    Google Scholar 

  170. Zimmerle C.T., Frieden C.: Analysis of progress curves by simulations generated by numerical integration. Biochem. J. 258, 381–387 (1989)

    Google Scholar 

  171. Zumsande M., Gross T.: Bifurcations and Chaos in the MAPK signaling cascade. J. Theor. Biol. 265, 481–491 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto M. Bersani.

Additional information

Communicated by Francesco dell'Isola and Giuseppe Piccardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bersani, A.M., Bersani, E., Dell’Acqua, G. et al. New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper. Continuum Mech. Thermodyn. 27, 659–684 (2015). https://doi.org/10.1007/s00161-014-0367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0367-4

Keywords

Mathematics Subject Classification (2010)

Navigation