Skip to main content
Log in

A generalization of the Gurtin’s variational principle in thermoelasticity without energy dissipation of dipolar bodies

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In our present paper, we approach the mixed problem with initial and boundary conditions, in the context of thermoelasticity without energy dissipation of bodies with a dipolar structure. Our first result is a reciprocal relation for the mixed problem which is reformulated by including the initial data into the field equations. Then, we deduce a generalization of Gurtin’s variational principle, which covers our generalized theory for bodies with a dipolar structure. It is important to emphasize that both results are obtained in a very general context, namely that of anisotropic and inhomogeneous environments, having a center of symmetry at each point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–307 (1967)

    Article  ADS  MATH  Google Scholar 

  2. Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed.) Handbuch der Physik, Vol. VIa/2. Springer, Berlin (1972)

    Google Scholar 

  3. Lebon, G.: Variational principles in thermomechanics. In: Lebon, G., Perzina, P. (eds.) Recent Developments in Thermomechanics of Solids. CISM Courses and Lectures, no. 262, pp. 221–396, Springer, Wien (1980)

  4. Green, A.E., Naghdi, P.M.: Re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432, 1171–1194 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: On undamped heat wave in elastic solids. J. Therm. Stress. 15(2), 253–264 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 9, 1–8 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iesan, D., Ciarletta, M.: Non-classical Elastic Solids, Longman Scientific and Technical. Wiley, Harlow (1993)

    MATH  Google Scholar 

  8. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Therm. 19(5), 253–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marin, M.: Lagrange identity method for microstretch thermoelastic materials. J. Math. Anal. Appl. 363(1), 275–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marin, M.: Some estimates on vibrations in thermoelasticity of dipolar bodies. J. Vib. Control 16(1), 33–47 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Svanadze, M.: Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures. J. Therm. Stress. 27, 151–170 (2004)

    Article  MathSciNet  Google Scholar 

  14. Marin, M., Nicaise, S.: Existence and stability results for thermoelastic dipolar bodies with double porosity. Contin. Mech. Therm. 28(6), 1645–1657 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marin, M., Craciun, E.M., Pop, N.: Considerations on mixed initial-boundary value problems for micropolar porous bodies. Dyn. Syst. Appl. 25(1–2), 175–196 (2016)

    MATH  Google Scholar 

  16. Marin, M., Ellahi, R., Chirila, A.: On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J. Math. 33(2), 219–232 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Marin, M., Vlase, S., Ellahi, R., Bhatti, M.M.: On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure. Symmetry 11(7), 1–16 (2019)

    Article  Google Scholar 

  18. Singh, A., Das, S., Craciun, E.-M.: Thermal stress intensity factor for an edge crack in orthotropic composite media. Compos. Part B 153(15), 130–136 (2018)

    Article  Google Scholar 

  19. Singh, A., Das, S., Craciun, E.-M.: The effect of thermo-mechanical loading on the edge crack of finite length in an infinite orthotropic strip. Mech. Compos. Mater. 55(3), 285–296 (2019)

    Article  ADS  Google Scholar 

  20. Marin, M., Bhatti, M.M.: Head-on collision between capillary-gravity solitary waves. Bound. Value Probl. 2020, 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  21. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M., Ijaz, N.: Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys. Lett. B 33(35), 1950439-1–1950439-16 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ghiţa, C., Pop, N., Popescu, I.: Existence result of an effective stress for an isotropic visco-plastic composite. Comput. Mater. Sci. 64, 52–56 (2012)

    Article  Google Scholar 

  23. Groza, G., Jianu, M., Pop, N.: Infinitely differentiable functions represented into Newton interpolating series. Carpathian J. Math. 30(3), 309–316 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  MATH  Google Scholar 

  25. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  MATH  Google Scholar 

  26. Marin, M., Öchsner, A.: Complements of Higher Mathematics. Springer, Cham (2018)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Öchsner, A. & Craciun, E.M. A generalization of the Gurtin’s variational principle in thermoelasticity without energy dissipation of dipolar bodies. Continuum Mech. Thermodyn. 32, 1685–1694 (2020). https://doi.org/10.1007/s00161-020-00873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00873-5

Keywords

Navigation