Skip to main content

Do We Really Need Pantographic Structures?

  • Chapter
  • First Online:
Mathematical Applications in Continuum and Structural Mechanics

Abstract

This chapter attempts to provide a comprehensive answer to the challenging question: do we really need pantographic structures? This question may arise spontaneously given the recent proliferation of contributions on this type of metamaterial in the literature. A reasoned answer to this question may be crucial for the future development and orientation of research concerning this metamaterial. More generally, we show the context from which the studies that led to the development of pantographic structures originated and observe how an excessively orthodox view of Continuum Mechanics may prevent interesting developments. Within the framework of generalised theories and second-gradient models, pantographic structures assume an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abali BE, Yang H (2019) Parameter determination of metamaterials in generalized mechanics as a result of computational homogenization. In: Indeitsev D, Krivtsov A (eds) Advanced problems in mechanics. APM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham, Swizerland, pp 22–31

    Google Scholar 

  • Abdoul-Anziz H, Seppecher P, Bellis C (2019) Homogenization of frame lattices leading to second gradient models coupling classical strain and strain-gradient terms. Math Mech Solids 24(12):3976–3999

    Article  MathSciNet  MATH  Google Scholar 

  • Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 8(1):51–73

    Article  MathSciNet  MATH  Google Scholar 

  • Altenbach H, Eremeyev V (2014) Strain rate tensors and constitutive equations of inelastic micropolar materials. Int J Plas 63:3–17

    Article  Google Scholar 

  • Altenbach H, Eremeyev VA (2010) On the theories of plates based on the Cosserat approach. In: Mechanics of generalized continua. Springer, pp 27–35

    Google Scholar 

  • Altenbach H, Eremeyev VA (2013) Cosserat media. In: Eremeyev VA, Altenbach H (ed) Generalized continua from the theory to engineering applications. Springer, pp 65–130

    Google Scholar 

  • Altenbach H, Bîrsan M, Eremeyev VA (2013) Cosserat-type rods. In: Generalized continua from the theory to engineering applications. Springer, pp 179–248

    Google Scholar 

  • Altenbach J, Altenbach H, Eremeyev VA (2010) On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch Appl Mech 80(1):73–92

    Article  MATH  Google Scholar 

  • Andreaus U, Spagnuolo M, Lekszycki T, Eugster SR (2018) A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Contin Mech Thermodyn 30(5):1103–1123

    Article  MathSciNet  MATH  Google Scholar 

  • Auffray N (2015) On the algebraic structure of isotropic generalized elasticity theories. Math Mech Solids 20(5):565–581

    Article  MathSciNet  MATH  Google Scholar 

  • Auger P, Lavigne T, Smaniotto B, Spagnuolo M, dell’Isola F, Hild F (2020) Poynting effects in pantographic metamaterial captured via multiscale DVC. J Strain Anal Eng Design 0309324720976625

    Google Scholar 

  • Barchiesi E, Laudato M, Di Cosmo F (2018) Wave dispersion in non-linear pantographic beams. Mechan Res Commun 94:128–132

    Article  Google Scholar 

  • Barchiesi E, Ganzosch G, Liebold C, Placidi L, Grygoruk R, Müller WH (2019a) Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Contin Mech Thermodyn 31(1):33–45

    Article  MathSciNet  Google Scholar 

  • Barchiesi E, Spagnuolo M, Placidi L (2019b) Mechanical metamaterials: a state of the art. Math Mech Solids 24(1):212–234

    Article  MathSciNet  MATH  Google Scholar 

  • Barchiesi E, dell’Isola F, Hild F, Seppecher P (2020a) Two-dimensional continua capable of large elastic extension in two independent directions: asymptotic homogenization, numerical simulations and experimental evidence. Mech Res Commun 103(103):466

    Google Scholar 

  • Barchiesi E, Eugster SR, dell’Isola F, Hild F (2020b) Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation. Math Mech Solids 25(3):739–767

    Article  MathSciNet  MATH  Google Scholar 

  • Barchiesi E, Yang H, Tran C, Placidi L, Müller WH (2020c) Computation of brittle fracture propagation in strain gradient materials by the fenics library. Math Mech Solids 1081286520954513

    Google Scholar 

  • Bertoldi K, Reis PM, Willshaw S, Mullin T (2010) Negative Poisson’s ratio behavior induced by an elastic instability. Adv mater 22(3):361–366

    Article  Google Scholar 

  • Bertram A (2015) Finite gradient elasticity and plasticity: a constitutive mechanical framework. Contin Mech Thermodyn 27(6):1039–1058

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch A (1944) XXXVIII. A new approach to the dynamics of systems with gyroscopic coupling terms. London, Edinburgh, and Dublin Philosoph Mag J Sci 35(244):315–334

    Google Scholar 

  • Bloch A (1945) Electromechanical analogies and their use for the analysis of mechanical and electromechanical systems. J Instit Electric Eng Part I Gener 92(52):157–169

    Google Scholar 

  • Boutin C, Giorgio I, Placidi L et al (2017) Linear pantographic sheets: asymptotic micro-macro models identification. Math Mech Complex Syst 5(2):127–162

    Article  MathSciNet  MATH  Google Scholar 

  • Capobianco G, Eugster S (2018) Time finite element based moreau-type integrators. Int J Numer Methods Engi 114(3):215–231

    Article  MathSciNet  Google Scholar 

  • Capobianco G, Eugster SR, Winandy T (2018) Modeling planar pantographic sheets using a nonlinear Euler–Bernoulli beam element based on B-spline functions. PAMM 18(1):e201800,220

    Google Scholar 

  • Carcaterra A, dell’Isola F, Esposito R, Pulvirenti M (2015) Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch Rational Mech Anal 218(3):1239–1262

    Article  MathSciNet  MATH  Google Scholar 

  • Cazzani A, Atluri S (1993) Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput Mech 11(4):229–251

    Article  MathSciNet  MATH  Google Scholar 

  • Cazzani A, Lovadina C (1997) On some mixed finite element methods for plane membrane problems. Comput Mech 20(6):560–572

    Article  MathSciNet  MATH  Google Scholar 

  • Cazzani A, Malagù M, Turco E (2016a) Isogeometric analysis of plane-curved beams. Math Mech Solids 21(5):562–577

    Article  MathSciNet  MATH  Google Scholar 

  • Cazzani A, Malagù M, Turco E, Stochino F (2016b) Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math Mech Solids 21(2):182–209

    Article  MathSciNet  MATH  Google Scholar 

  • Cazzani A, Stochino F, Turco E (2016c) An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. ZAMM J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 96(10):1220–1244

    Article  MathSciNet  MATH  Google Scholar 

  • Cazzani A, Serra M, Stochino F, Turco E (2020) A refined assumed strain finite element model for statics and dynamics of laminated plates. Contin Mech Thermodyn 32(3):665–692

    Article  MathSciNet  Google Scholar 

  • Cricrì G, Perrella M, Sessa S, Valoroso N (2015) A novel fixture for measuring mode iii toughness of bonded assemblies. Eng Fract Mech 138:1–18

    Article  Google Scholar 

  • Cuomo M (2019) Continuum damage model for strain gradient materials with applications to 1d examples. Contin Mech Thermodyn 31(4):969–987

    Article  MathSciNet  Google Scholar 

  • Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 80:173–188

    Article  MathSciNet  MATH  Google Scholar 

  • dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes rendus de l’Académie des sciences Série II, Mécanique, physique, chimie, astronomie 321(8):303–308

    Google Scholar 

  • dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33–52

    Article  MathSciNet  MATH  Google Scholar 

  • dell’Isola F, Steigmann DJ (2020) Discrete and continuum models for complex metamaterials. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316104262

  • dell’Isola F, Sciarra G, Vidoli S (2009) Generalized Hooke’s law for isotropic second gradient materials. Proc R Soc A Math Phys Eng Sci 465(2107):2177–2196

    MathSciNet  MATH  Google Scholar 

  • dell’Isola F, Maier G, Perego U, et al (2014) The complete works of Gabrio Piola: Volume I (Advanced structured materials, vol 38). Springer, Berlin

    Google Scholar 

  • dell’Isola F, Andreaus U, Placidi L (2015a) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928

    Article  MathSciNet  MATH  Google Scholar 

  • dell’Isola F, Giorgio I, Andreaus U (2015b) Elastic pantographic 2d lattices: a numerical analysis on the static response and wave propagation. Proc Estonian Acad Sci 64(3):219

    Article  Google Scholar 

  • dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL (2016) Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc R Soc A Math Phys Eng Sci 472(2185):20150,790

    Google Scholar 

  • dell’Isola F, Maier G, Perego U et al (2019) The complete works of Gabrio Piola, vol II. Springer, Cham

    Google Scholar 

  • Epstein M, Smelser R (2020) An appreciation and discussion of Paul Germain’s “The method of virtual power in the mechanics of continuous media, I: second-gradient theory". Math Mech Complex Syst 8(2):191–199

    Google Scholar 

  • Eremeyev VA, dell’Isola F (2018) A note on reduced strain gradient elasticity. In: Altenbach H., Pouget J., Rousseau M., Collet B., Michelitsch T. (eds) Generalized models and non-classical approaches in complex materials 1. Advanced structured materials, vol 89. Springer, Cham, pp 301–310

    Google Scholar 

  • Eremeyev VA, Lebedev LP, Altenbach H (2012) Foundations of micropolar mechanics. Springer, Heidelberg

    MATH  Google Scholar 

  • Eremeyev VA, dell’Isola F, Boutin C, Steigmann D (2018) Linear pantographic sheets: existence and uniqueness of weak solutions. J Elast 132(2):175–196

    Article  MathSciNet  MATH  Google Scholar 

  • Eremeyev VA, Alzahrani FS, Cazzani A, dell’Isola F, Hayat T, Turco E, Konopińska-Zmysłowska V (2019) On existence and uniqueness of weak solutions for linear pantographic beam lattices models. Contin Mech Thermodyn 31(6):1843–1861

    Article  MathSciNet  Google Scholar 

  • Eugster S, dell’Isola F, Steigmann D (2019) Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math Mech Complex Syst 7(1):75–98

    Article  MathSciNet  MATH  Google Scholar 

  • Eugster SR, Glocker C (2013) Constraints in structural and rigid body mechanics: a frictional contact problem. Annals Solid Struct Mech 5(1–2):1–13

    Article  Google Scholar 

  • Evans KE (1991) Auxetic polymers: a new range of materials. Endeavour 15(4):170–174

    Article  Google Scholar 

  • Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking!. Adv Mater 12(9):617–628

    Article  Google Scholar 

  • Germain P (1973) The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J Appl Math 25(3):556–575

    Google Scholar 

  • Germain P (2020) The method of virtual power in the mechanics of continuous media, I: second-gradient theory. Math Mechan Complex Syst 8(2):153–190

    Article  MathSciNet  MATH  Google Scholar 

  • Giorgio I, Rizzi NL, Andreaus U, Steigmann DJ (2019) A two-dimensional continuum model of pantographic sheets moving in a 3D space and accounting for the offset and relative rotations of the fibers. Math Mech Complex Syst 7(4):311–325

    Article  MathSciNet  MATH  Google Scholar 

  • Giorgio I, Ciallella A, Scerrato D (2020) A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials. Int J Solids Struct 203:73–83

    Article  Google Scholar 

  • Greco F, Luciano R, Serino G, Vaiana N (2018) A mixed explicit-implicit time integration approach for nonlinear analysis of base-isolated structures. Annals Solid Struct Mech 10(1):17–29

    Article  Google Scholar 

  • Greco L, Cuomo M (2013) B-Spline interpolation of Kirchhoff-Love space rods. Comput Methods Appl Mech Eng 256:251–269

    Article  MathSciNet  MATH  Google Scholar 

  • Greco L, Cuomo M (2014) An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput Methods Appl Mech Eng 269:173–197

    Article  MATH  Google Scholar 

  • Hesch C, Schuß S, Dittmann M, Eugster S, Favino M, Krause R (2017) Variational space-time elements for large-scale systems. Comput Methods Appl Mech Eng 326:541–572

    Article  MathSciNet  MATH  Google Scholar 

  • Hild F, Misra A, dell’Isola F (2020) Multiscale DIC applied to pantographic structures. Exper Mech

    Google Scholar 

  • Huang J, Boisse P, Hamila N, Zhu Y (2020) Simulation of wrinkling during bending of composite reinforcement laminates. Materials 13(10):2374

    Article  Google Scholar 

  • Huang J, Boisse P, Hamila N, Gnaba I, Soulat D, Wang P (2021) Experimental and numerical analysis of textile composite draping on a square box, influence of the weave pattern. Compos Struct 113844

    Google Scholar 

  • Jafarzadeh H, Farrahi GH, Levitas VI, Javanbakht M (2020) Phase field theory for fracture at large strains including surface stresses. arXiv preprint arXiv:201113324

  • Khakalo S, Niiranen J (2020) Anisotropic strain gradient thermoelasticity for cellular structures: Plate models, homogenization and isogeometric analysis. J Mech Phys Solids 134(103):728

    MathSciNet  Google Scholar 

  • Kron G (1945) Numerical solution of ordinary and partial differential equations by means of equivalent circuits. J Appl Phys 16(3):172–186

    Article  MathSciNet  MATH  Google Scholar 

  • Lagrange JL (1806) Traité de la résolution des équations numériques de tous les degrés: avec des notes sur plusieurs points de la théorie des équations algébriques. chez Courcier

    Google Scholar 

  • Lagrange JL (1853) Mécanique analytique, vol 1. Mallet-Bachelier, Paris

    Google Scholar 

  • Laudato M, Barchiesi E (2019) Non-linear dynamics of pantographic fabrics: modelling and numerical study. In: Wave dynamics, mechanics and physics of microstructured metamaterials. Springer, pp 241–254

    Google Scholar 

  • Laudato M, Manzari L, Barchiesi E, Di Cosmo F, Göransson P (2018) First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech Res Commun 94:125–127

    Article  Google Scholar 

  • Laudato M, Manzari L, Scerrato D, Göransson P, Giorgio I (2020) Spectral properties of 2d pantographic metamaterial: experimental results. Mech Res Commun 109(103):613

    Google Scholar 

  • Mablekos E, Weidmann H (1968) Realization of negative impedance inverter using Kron’s mesh primitive-branch approach. J Franklin Instit 286(1):59–75

    Article  Google Scholar 

  • Marmo F, Masi D, Rosati L (2018a) Thrust network analysis of masonry helical staircases. Int J Architec Heritage 12(5):828–848

    Article  Google Scholar 

  • Marmo F, Ruggieri N, Toraldo F, Rosati L (2018b) Historical study and static assessment of an innovative vaulting technique of the 19th century. Int J Architec Heritage

    Google Scholar 

  • Marmo F, Demartino C, Candela G, Sulpizio C, Briseghella B, Spagnuolo R, Xiao Y, Vanzi I, Rosati L (2019) On the form of the musmeci’s bridge over the basento river. Eng Struct 191:658–673

    Article  Google Scholar 

  • Maugin GA (2011) A historical perspective of generalized continuum mechanics. In: Altenbach H, Maugin G, Erofeev V (eds) Mechanics of generalized continua. Advanced structured materials, vol 7. Springer, Berlin, Heidelberg, pp 3–19

    Google Scholar 

  • Maurin F, Greco F, Desmet W (2019) Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models. Contin Mech Thermodyn 31(4):1051–1064

    Article  MathSciNet  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438

    Article  Google Scholar 

  • Misra A, Poorsolhjouy P (2020) Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math Mech Solids 25(10):1778–1803

    Article  MathSciNet  MATH  Google Scholar 

  • Misra A, Lekszycki T, Giorgio I, Ganzosch G, Müller WH, Dell’Isola F (2018) Pantographic metamaterials show atypical poynting effect reversal. Mech Res Commun 89:6–10

    Article  Google Scholar 

  • Namnabat MS, Barzegar A, Barchiesi E, Javanbakht M (2020) Nonlinear buckling analysis of double-layered graphene nanoribbons based on molecular mechanics. Carbon Lett 1–16

    Google Scholar 

  • Paradiso M, Marmo F, Rosati L (2019) Consistent derivation of a beam model from the saint Venant’s solid model. Int J Solids Struct 159:90–110

    Article  Google Scholar 

  • Perricone V, Grun T, Marmo F, Langella C, Carnevali MDC (2020) Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications. Bioinspiration Biomimetics

    Google Scholar 

  • Pideri C, Seppecher P (1997) A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin Mech Thermodyn 9(5):241–257

    Article  MathSciNet  MATH  Google Scholar 

  • Piola G (1846) Intorno alle equazioni fondamentali del movimento di corpi qualsivogliono, considerati secondo la naturale loro forma e costituzione: memoria, vol 10282. BD Camera

    Google Scholar 

  • Placidi L (2015) A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin Mech Thermodyn 27(4–5):623–638

    Article  MathSciNet  MATH  Google Scholar 

  • Placidi L, Barchiesi E, Misra A (2018) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math Mech Complex Syst 6(2):77–100

    Article  MathSciNet  MATH  Google Scholar 

  • Placidi L, dell’Isola F, Barchiesi E (2020) Heuristic homogenization of Euler and pantographic beams. In: Picu C, Ganghoffer JF (eds) Mechanics of fibrous materials and applications. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol 596. Springer, Cham, pp 123–155

    Google Scholar 

  • Rahali Y, Giorgio I, Ganghoffer J, dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 97:148–172

    Article  MathSciNet  MATH  Google Scholar 

  • Rahbar H, Javanbakht M, Ziaei-Rad S, Reali A, Jafarzadeh H (2020) Finite element analysis of coupled phase-field and thermoelasticity equations at large strains for martensitic phase transformations based on implicit and explicit time discretization schemes. Mech Adv Mater Struct 1–17

    Google Scholar 

  • Scerrato D, Giorgio I (2019) Equilibrium of two-dimensional cycloidal pantographic metamaterials in three-dimensional deformations. Symmetry 11(12):1523

    Article  Google Scholar 

  • Schulte J, Dittmann M, Eugster S, Hesch S, Reinicke T, Dell’Isola F, Hesch C (2020) Isogeometric analysis of fiber reinforced composites using kirchhoff-love shell elements. Comput Methods Appl Mech Eng 362(112):845

    MathSciNet  MATH  Google Scholar 

  • Seppecher P (1989) Etude des conditions aux limites en théorie du second gradient: cas de la capillarité. Comptes rendus de l’Académie des sciences Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre 309(6):497–502

    Google Scholar 

  • Seppecher P (2000) Second-gradient theory: application to Cahn-Hilliard fluids. In: In: Maugin G.A., Drouot R., Sidoroff F. (eds) Continuum thermomechanics. Solid mechanics and its applications, vol 76. Springer, Dordrecht, pp 379–388

    Google Scholar 

  • Seppecher P, Alibert JJ, dell’Isola F (2011) Linear elastic trusses leading to continua with exotic mechanical interactions. J Phys Conf Series 319(1):012,018

    Google Scholar 

  • Serpieri R, Sessa S, Rosati L (2018) A mitc-based procedure for the numerical integration of a continuum elastic-plastic theory of through-the-thickness-jacketed shell structures. Compos Struct 191:209–220

    Article  Google Scholar 

  • Sessa S, Marmo F, Rosati L (2015) Effective use of seismic response envelopes for reinforced concrete structures. Earthq Eng Struct Dyn 44(14):2401–2423

    Article  Google Scholar 

  • Sessa S, Serpieri R, Rosati L (2017) A continuum theory of through-the-thickness jacketed shells for the elasto-plastic analysis of confined composite structures: Theory and numerical assessment. Compos Part B Eng 113:225–242

    Article  Google Scholar 

  • Sessa S, Marmo F, Rosati L, Leonetti L, Garcea G, Casciaro R (2018a) Evaluation of the capacity surfaces of reinforced concrete sections: Eurocode versus a plasticity-based approach. Meccanica 53(6):1493–1512

    Article  Google Scholar 

  • Sessa S, Marmo F, Vaiana N, Rosati L (2018b) A computational strategy for eurocode 8-compliant analyses of reinforced concrete structures by seismic envelopes. J Earthq Eng 1–34

    Google Scholar 

  • Sessa S, Marmo F, Vaiana N, De Gregorio D, Rosati L (2019a) Strength hierarchy provisions for transverse confinement systems of shell structural elements. Compos Part B Eng 163:413–423

    Article  Google Scholar 

  • Sessa S, Marmo F, Vaiana N, Rosati L (2019b) Probabilistic assessment of axial force-biaxial bending capacity domains of reinforced concrete sections. Meccanica 54(9):1451–1469

    Article  MathSciNet  Google Scholar 

  • Spagnuolo M (2020) Circuit analogies in the search for new metamaterials: phenomenology of a mechanical diode. In: Altenbach H, Eremeyev V, Pavlov I, Porubov A (eds) Nonlinear wave dynamics of materials and structures. Advanced structured materials, vol 122. Springer, Cham, pp 411–422

    Google Scholar 

  • Spagnuolo M, Scerrato D (2020) The mechanical diode: on the tracks of James Maxwell employing mechanical–electrical analogies in the design of metamaterials. In: Abali B, Giorgio I (eds) Developments and novel approaches in biomechanics and metamaterials. Advanced structured materials, vol 132. Springer, Cham, pp 459–469

    Google Scholar 

  • Spagnuolo M, Barcz K, Pfaff A, dell’Isola F, Franciosi P (2017) Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech Res Commun 83:47–52

    Article  Google Scholar 

  • Spagnuolo M, Peyre P, Dupuy C (2019) Phenomenological aspects of quasi-perfect pivots in metallic pantographic structures. Mech Res Commun 101(103):415

    Google Scholar 

  • Turco E, Barchiesi E (2019) Equilibrium paths of Hencky pantographic beams in a three-point bending problem. Math Mech Complex Syst 7(4):287–310

    Article  MathSciNet  MATH  Google Scholar 

  • Turco E, Giorgio I, Misra A, Dell’Isola F (2017) King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R Soc Open Sci 4(10):171,153

    Google Scholar 

  • Turco E, Misra A, Pawlikowski M, dell’Isola F, Hild F (2018) Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int J Solids Struct 147:94–109

    Article  Google Scholar 

  • Turco E, Dell’Isola F, Misra A (2019a) A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations. Int J Numer Anal Methods Geomech 43(5):1051–1079

    Article  Google Scholar 

  • Turco E, Misra A, Sarikaya R, Lekszycki T (2019b) Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling. Contin Mech Thermodyn 31(1):209–223

    Article  MathSciNet  Google Scholar 

  • Vaiana N, Spizzuoco M, Serino G (2017) Wire rope isolators for seismically base-isolated lightweight structures: experimental characterization and mathematical modeling. Eng Struct 140:498–514

    Article  Google Scholar 

  • Vaiana N, Sessa S, Marmo F, Rosati L (2019) Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dyn 98(4):2879–2901

    Article  MATH  Google Scholar 

  • Vaiana N, Capuano R, Sessa S, Marmo F, Rosati L (2021) Nonlinear dynamic analysis of seismically base-isolated structures by a novel opensees hysteretic material model. Appl Sci 11(3):900

    Article  Google Scholar 

  • Yang H, Ganzosch G, Giorgio I, Abali BE (2018) Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Zeitschrift für angewandte Mathematik und Physik 69(4):105

    Article  MathSciNet  MATH  Google Scholar 

  • Yang H, Abali BE, Timofeev D, Müller WH (2019) Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Contin Mech Thermodyn 1–20

    Google Scholar 

  • Yildizdag ME, Barchiesi E, dell’Isola F (2020) Three-point bending test of pantographic blocks: numerical and experimental investigation. Math Mech Solids 25(10):1965–1978

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Il presente articolo é stato realizzato nell’mbito del progetto di ricerca finanziato con le risorse del P.O.R. SARDEGNA F.S.E. 2014–2020—Asse III “Istruzione e Formazione, Obiettivo Tematico: 10, Obiettivo Specifico: 10.5, Azione dell’ccordo di Partenariato:10.5.12” Avviso di chiamata per il finanziamento di Progetti di ricerca—Anno 2017

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Spagnuolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spagnuolo, M., Barchiesi, E. (2021). Do We Really Need Pantographic Structures?. In: Marmo, F., Sessa, S., Barchiesi, E., Spagnuolo, M. (eds) Mathematical Applications in Continuum and Structural Mechanics. Advanced Structured Materials, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-42707-8_13

Download citation

Publish with us

Policies and ethics