Skip to main content
Log in

Stress concentration analysis of nanosized thin-film coating with rough interface

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The boundary perturbation method combined with the superposition principle is used to calculate the stress concentration along the arbitrary curved interface of an isotropic thin film coherently bonded to a substrate. In the case of plane strain conditions, the boundary value problem is formulated for a four-phase system involving two-dimensional constitutive equations for bulk materials and one-dimensional equations of Gurtin–Murdoch model for surface and interface. Static boundary conditions are formulated in the form of generalized Young–Laplace equations. Kinematic boundary conditions describe the continuous of displacements across the surface and interphase regions. Using Goursat–Kolosov complex potentials, the system of boundary equations is reduced to a system of the integral equations via first-order boundary perturbation method. Finally, the solution of boundary value problem is obtained in terms of Fourier series. The numerical analysis is then carried out using the practically important properties of ultra-thin-film materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  2. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. Z. Angew. Math. Mech. 90, 231–240 (2010)

    Article  MathSciNet  Google Scholar 

  3. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bashkankova, E.A., Vakaeva, A.B., Grekov, M.A.: Perturbation method in the problem on a nearly circular hole in an elastic plane. Mech. Solids 50, 198–207 (2015)

    Article  ADS  Google Scholar 

  5. Chhapadia, P., Mohammadi, P., Sharma, P.: Curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids. 59, 2103–2115 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  ADS  Google Scholar 

  7. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2009)

    Article  Google Scholar 

  8. Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  Google Scholar 

  9. Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann–Ogden model of surface elasticity. Cont. Mech. Therm. 28, 407–422 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gao, X., Huang, Z., Fang, D.: Curvature-dependent interfacial energy and its effects on the elastic properties of nanomaterials. Int. J. Solids Struct. 113–114, 100–107 (2017)

    Article  Google Scholar 

  11. Grekov, M.A.: A slightly curved crack in an isotropic body. Vestnik Sankt–Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. (3), 74–80 (2002)

  12. Grekov, M.A.: The perturbation approach for a two-component composite with a slightly curved interface. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. (1), 81–88 (2004)

  13. Grekov, M.A., Kostyrko, S.A.: A film coating on a rough surface of an elastic body. J. Appl. Math. Mech. 77, 79–90 (2013)

    Article  MathSciNet  Google Scholar 

  14. Grekov, M.A., Kostyrko, S.A.: A multilayer film coating with slightly curved boundary. Int. J. Eng. Sci. 89, 61–74 (2015)

    Article  MathSciNet  Google Scholar 

  15. Grekov, M.A., Kostyrko, S.A.: Surface effects in an elastic solid with nanosized surface asperities. Int. J. Solids Struct. 96, 153–161 (2016)

    Article  Google Scholar 

  16. Grekov, M.A., Kostyrko, S.A., Vakaeva, A.B.: The model of surface nanorelief within continuum mechanics. AIP Conf. Proc. 1909, 020062 (2017)

    Article  Google Scholar 

  17. Grekov, M.A., Sergeeva, T.S., Pronina, Y.G., Sedova, O.S.: A periodic set of edge dislocations in an elastic solid with a planar boundary incorporating surface effects. Eng. Fract. Mech. 186, 423–435 (2017)

    Article  Google Scholar 

  18. Grekov, M.A., Vakaeva, A.B.: Effect of nanosized asperities at the surface of a nanohole. Proc. VII Europ. Congr. Comput. Meth. Appl. Sci. Eng. 4(1), 7875–7885 (2016)

    Article  Google Scholar 

  19. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  20. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  Google Scholar 

  21. Kim, H.-K., et al.: Suppression of interface roughness between \(\text{ BaTiO }_3\) film and substrate by \(\text{ Si }_3\text{ N }_4\) buffer layer regarding aerosol deposition process. J. Alloys Compd. 653, 69–76 (2015)

    Article  Google Scholar 

  22. Kostyrko, S.A., Altenbach, H., Grekov, M.A.: Stress concentration in ultra-thin film coating with undulated surface profile. In: Papadrakasis, M., Oñate, E., Schrefler, B.: VII International Conference on Computational Methods for Coupled Problems in Science and Engineering, Coupled Problems 2017, pp. 1183–1192. CIMNE, Barcelona (2017)

  23. Kostyrko, S.A., Grekov, M.A., Altenbach, H.: A model of nanosized thin film coating with sinusoidal interface. AIP Conf. Proc. 1959, 070017 (2018)

    Article  Google Scholar 

  24. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  ADS  Google Scholar 

  25. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Netherlands (1977)

    Book  Google Scholar 

  26. Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of short-fiber composites with Gurtin–Murdoch model of interphase. Int. J. Solids Struct. 97–98, 75–78 (2016)

    Article  Google Scholar 

  27. Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  28. Romanova, V.A., Balokhonov, R.R.: Numerical analysis of mesoscale surface roughening in a coated plate. Comput. Mater. Sci. 61, 71–75 (2012)

    Article  Google Scholar 

  29. Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys.Mech. Astron. 53, 536–544 (2008)

    Article  ADS  Google Scholar 

  30. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A. 453, 853–877 (1997)

    Article  MathSciNet  Google Scholar 

  31. Steigmann, D.J., Ogden, R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A. 455, 437–474 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  32. Tian, L., Rajapakse, R.K.N.D.: Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Comput. Mater. Sci. 41, 44–53 (2007)

    Article  Google Scholar 

  33. Vikulina, YuI, Grekov, M.A., Kostyrko, S.A.: Model of film coating with weakly curved surface. Mech. Solids 45, 778–788 (2010)

    Article  ADS  Google Scholar 

  34. Zemlyanova, A.Y., Mogilevskaya, S.G.: Circular inhomogeneity with Steigmann–Ogden interface: local fields, neutrality, and Maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85–98 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Kostyrko.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by German Academic Exchange Service and St. Petersburg State University under joint Grant 9.23.819.2017 and Russian Foundation for Basic Research under Grant 18-01-00468.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyrko, S., Grekov, M. & Altenbach, H. Stress concentration analysis of nanosized thin-film coating with rough interface. Continuum Mech. Thermodyn. 31, 1863–1871 (2019). https://doi.org/10.1007/s00161-019-00780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00780-4

Keywords

Navigation