Skip to main content
Log in

Mathematical study of boundary-value problems within the framework of Steigmann–Ogden model of surface elasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Mathematical questions pertaining to linear problems of equilibrium dynamics and vibrations of elastic bodies with surface stresses are studied. We extend our earlier results on existence of weak solutions within the Gurtin–Murdoch model to the Steigmann–Ogden model of surface elasticity using techniques from the theory of Sobolev’s spaces and methods of functional analysis. The Steigmann–Ogden model accounts for the bending stiffness of the surface film; it is a generalization of the Gurtin–Murdoch model. Weak setups of the problems, based on variational principles formulated, are employed. Some uniqueness-existence theorems for weak solutions of static and dynamic problems are proved in energy spaces via functional analytic methods. On the boundary surface, solutions to the problems under consideration are smoother than those for the corresponding problems of classical linear elasticity and those described by the Gurtin–Murdoch model. The weak setups of eigenvalue problems for elastic bodies with surface stresses are based on the Rayleigh and Courant variational principles. For the problems based on the Steigmann–Ogden model, certain spectral properties are established. In particular, bounds are placed on the eigenfrequencies of an elastic body with surface stresses; these demonstrate the increase in the body rigidity and the eigenfrequencies compared with the situation where the surface stresses are neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140, 2nd edn. Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Altenbach H., Eremeyev V.A., Lebedev L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(3), 231–240 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Altenbach H., Eremeyev V.A., Lebedev L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Askes H., Aifantis E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  5. Ciarlet, P.G.: Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity. Elsevier, Amsterdam (1998)

  6. Ciarlet, P.G.: Mathematical Elasticity. Vol. III: Theory of Shells. Elsevier, Amsterdam (2000)

  7. Courant R., Hilbert D.: Methods of Mathematical Physics Vol. I. Wiley, Singapore (1989)

    Book  MATH  Google Scholar 

  8. Cuenot S., Frétigny C., Demoustier-Champagne S., Nysten B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B. 69(16), 165–410 (2004)

    Article  Google Scholar 

  9. dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. London A.: Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la d’Alembert”. ZAMP 63, 1119–1141 (2012)

    MathSciNet  ADS  MATH  Google Scholar 

  12. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)

  13. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mechanica in print (2015)

  14. Eremeyev V.A., Lebedev L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fichera G.: Existence theorems in elasticity. In: Flügge, S. (ed.) Handbuch der Physik. vol. VIa/2, pp. 347–389. Springer, Berlin (1972)

    Google Scholar 

  16. Gennes P.G.: Some effects of long range forces on interfacial phenomena. J. Phys. Lett. 42(16), 377–379 (1981)

    Article  Google Scholar 

  17. Gurtin M.E., Murdoch A.I.: Addenda to our paper A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59(4), 389–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Javili A., McBride A., Steinmann P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010,802–1-31 (2012)

  20. Javili A., McBride A., Steinmann P., Reddy B.: Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philos. Mag. 92(28–30), 3540–3563 (2012)

    Article  ADS  Google Scholar 

  21. Jing G.Y., Duan H.L., Sun X.M., Zhang Z.S., Xu J., Wang Y.D.L.J.X., Yu D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B. 73(23), 235–409–6 (2006)

    Article  Google Scholar 

  22. Kim C.I., Schiavone P., Ru C.Q.: Effect of surface elasticity on an interface crack in plane deformations. Proc. R. Soc. A. 467(2136), 3530–3549 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Kim C.I., Schiavone P., Ru C.Q.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59–66 (2013)

    Article  MathSciNet  Google Scholar 

  24. Laplace P.S., Fournier J.J.F.: Sur l’action capillaire. Supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol. 4. Supplement 1, Livre X, pp. 771–777. Gauthier–Villars et fils, Paris (1805)

    Google Scholar 

  25. Laplace P.S.: À la théorie de l’action capillaire. Supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol. 4. Supplement 2, Livre X, pp. 909–945. Gauthier–Villars et fils, Paris (1806)

    Google Scholar 

  26. Lebedev L.P., Vorovich I.I.: Functional Analysis in Mechanics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  27. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)

    Article  ADS  Google Scholar 

  28. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  29. Mishuris G.S.: Interface crack and nonideal interface concept (Mode III). Int. J. Fract. 107(3), 279–296 (2001)

    Article  Google Scholar 

  30. Mishuris, G.S.: Mode III interface crack lying at thin nonhomogeneous anisotropic interface. Asymptotics near the crack tip. In: Movchan A.B. (ed.) IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics, Solid Mechanics and Its Applications, vol. 113, pp. 251–260. Springer (2004)

  31. Mishuris G.S., Kuhn G.: Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. ZAMM 81(12), 811–826 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Poisson S.D.: Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, Paris (1831)

    Google Scholar 

  33. Schiavone P., Ru C.Q.: Integral equation methods in plane-strain elasticity with boundary reinforcement. Proc. R. Soc. London. Ser. A: Math. Phys. Eng. Sci. 454(1976), 2223–2242 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Schiavone P., Ru C.Q.: Solvability of boundary value problems in a theory of plane-strain elasticity with boundary reinforcement. Int. J. Eng. Sci. 47(11), 1331–1338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Seppecher, P.: Les fluides de Cahn-Hilliard. Mémoire d’habilitation à diriger des recherches, Université du Sud Toulon (1996)

  36. Shenoy V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B. 71(9), 094,104 (2005)

    Article  Google Scholar 

  37. Sigaeva, T., Schiavone, P.: The effect of surface stress on an interface crack in linearly elastic materials. Math. Mech. Solids. (2014). doi:10.1177/1081286514534871

  38. Sigaeva T., Schiavone P.: Solvability of a theory of anti-plane shear with partially coated boundaries. Arch. Mech. 66(2), 113–125 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Steigmann D.J., Ogden R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A. 453(1959), 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Steigmann D.J., Ogden R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A. 455(1982), 437–474 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Wang J., Duan H.L., Huang Z.P., Karihaloo B.L.: A scaling law for properties of nano-structured materials. Proc. R. Soc. A. 462(2069), 1355–1363 (2006)

    Article  ADS  MATH  Google Scholar 

  42. Wang J., Huang Z., Duan H., Yu S., Feng X., Wang G., Zhang W., Wang T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev.

Additional information

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell'Isola.

In honor of Prof. David Steigmann

The first author acknowledges the supports by the RFBR with the Grant No. 15-01-01492.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeyev, V.A., Lebedev, L.P. Mathematical study of boundary-value problems within the framework of Steigmann–Ogden model of surface elasticity. Continuum Mech. Thermodyn. 28, 407–422 (2016). https://doi.org/10.1007/s00161-015-0439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0439-0

Keywords

Navigation