Skip to main content
Log in

A solution set-based entropy principle for constitutive modeling in mechanics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Entropy principles based on thermodynamic consistency requirements are widely used for constitutive modeling in continuum mechanics, providing physical constraints on a priori unknown constitutive functions. The well-known Müller–Liu procedure is based on Liu’s lemma for linear systems. While the Müller–Liu algorithm works well for basic models with simple constitutive dependencies, it cannot take into account nonlinear relationships that exist between higher derivatives of the fields in the cases of more complex constitutive dependencies. The current contribution presents a general solution set-based procedure, which, for a model system of differential equations, respects the geometry of the solution manifold, and yields a set of constraint equations on the unknown constitutive functions, which are necessary and sufficient conditions for the entropy production to stay nonnegative for any solution of the model. Similarly to the Müller–Liu procedure, the solution set approach is algorithmic, its output being a set of constraint equations and a residual entropy inequality. The solution set method is applicable to virtually any physical model, allows for arbitrary initially postulated forms of the constitutive dependencies, and does not use artificial constructs like Lagrange multipliers. A Maple implementation makes the solution set method computationally straightforward and useful for the constitutive modeling of complex systems. Several computational examples are considered, in particular models of gas, anisotropic fluid, and granular flow dynamics. The resulting constitutive function forms are analyzed, and comparisons are provided. It is shown how the solution set entropy principle can yield classification problems, leading to several complementary sets of admissible constitutive functions; such classification problems have not previously appeared in the constitutive modeling literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  2. Magnenet, V., Rahouadj, R., Ganghoffer, J., Cunat, C.: On the lie symmetry groups with application to a non linear viscoelastic behaviour. J. Mech. Behav. Mater. 16(4–5), 241–248 (2005)

    MATH  Google Scholar 

  3. Magnenet, V., Rahouadj, R., Ganghoffer, J.-F.: A new methodology for determining the mechanical behavior of polymers exploiting lie symmetries: application to a stick-like material. Mech. Mater. 41(9), 1017–1024 (2009)

    Article  Google Scholar 

  4. Magnenet, V., Rahouadj, R., Ganghoffer, J.-F.: Symmetry analysis and invariance relations in creep. Math. Mech. Solids 19(8), 988–1010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Magnenet, V., Rahouadj, R., Ganghoffer, J.-F., Cunat, C.: Continuous symmetry analysis of a dissipative constitutive law: application to the time-temperature superposition. Eur. J. Mech. A/Solids 28(4), 744–751 (2009)

    Article  ADS  MATH  Google Scholar 

  6. Rahouadj, R., Ganghoffer, J.-F., Cunat, C.: A thermodynamic approach with internal variables using lagrange formalism. Part II. Continuous symmetries in the case of the time-temperature equivalence. Mech. Res. Commun. 30(2), 119–123 (2003)

    Article  MATH  Google Scholar 

  7. Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)

    Article  Google Scholar 

  8. Goda, I., Assidi, M., Ganghoffer, J.-F.: A 3d elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  9. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration Mech. Anal. 13(1), 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kremer, G.: Extended thermodynamics of ideal gases with 14 fields. Ann. l’IHP Phys. théor. 45, 419–440 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Liu, I.-S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46(2), 131–148 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28(1), 1–39 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Müller, I., Liu, I.-S.: Thermodynamics of mixtures of fluids. In: Truesdell, C. (ed.) Rational Thermodynamics. Springer, Berlin (1984)

    Google Scholar 

  14. Müller, I.: On the entropy inequality. Arch. Ration. Mech. Anal. 26(2), 118–141 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Truesdell, C.: Sulle basi della termomeccanica. Rend. Lincei 22(8), 33–38 (1957)

    MathSciNet  MATH  Google Scholar 

  16. Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37(10), 2336–2344 (1962)

    Article  ADS  Google Scholar 

  17. Liu, I.-S.: On irreversible thermodynamics. PhD thesis, Johns Hopkins University, Baltimore, (1972)

  18. Hauser, R., Kirchner, N.: A historical note on the entropy principle of Müller and Liu. Contin. Mech. Thermodyn. 14(2), 223–226 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Reis, M.C., Wang, Y.: A two-fluid model for reactive dilute solid-liquid mixtures with phase changes. Contin. Mech. Thermodyn. 29(2), 1–26 (2016)

    MathSciNet  Google Scholar 

  20. Liu, I.-S.: Entropy flux relation for viscoelastic bodies. J. Elast. 90(3), 259–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, I.-S., Müller, I.: On the thermodynamics and thermostatics of fluids in electromagnetic fields. Arch. Ration. Mech. Anal. 46(2), 149–176 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Svendsen, B., Chanda, T.: Continuum thermodynamic formulation of models for electromagnetic thermoinelastic solids with application in electromagnetic metal forming. Contin. Mech. Thermodyn. 17(1), 1–16 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Heß, J., Wang, Y., Hutter, K.: Thermodynamically consistent modeling of granular-fluid mixtures incorporating pore pressure evolution and hypoplastic behavior. Contin. Mech. Thermodyn. 29(1), 311–343 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Schneider, L., Hutter, K.: Solid-Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context: Based on a Concise Thermodynamic Analysis. Springer, Berlin (2009)

    Book  Google Scholar 

  25. Cheviakov, A., Heß, J.: A symbolic computation framework for constitutive modelling based on entropy principles. Appl. Math. Comput. 324, 105–118 (2018)

    MathSciNet  Google Scholar 

  26. Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer, Berlin (2000)

    MATH  Google Scholar 

  27. Müller, I.: A new systematic approach to non-equilibrium thermodynamics. Pure Appl. Chem. 22(3–4), 335–342 (1970)

    Article  Google Scholar 

  28. Müller, I.: Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten. Arch. Ration. Mech. Anal. 40(1), 1–36 (1971)

    Article  MATH  Google Scholar 

  29. Müller, I.: The coldness, a universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 41(5), 319–332 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cheviakov, A.F.: Gem software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun. 176(1), 48–61 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Cheviakov, A.F.: Computation of fluxes of conservation laws. J. Eng. Math. 66(1–3), 153–173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cheviakov, A.F.: Symbolic computation of local symmetries of nonlinear and linear partial and ordinary differential equations. Math. Comput. Sci. 4(2–3), 203–222 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reid, G.J., Wittkopf, A.D., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7(6), 635–666 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Hutter, K.: Comparison of two entropy principles and their applications in granular flows with/without fluid. Arch. Mech. 51(5), 605–632 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Wang, Y., Hutter, K.: Shearing flows in a Goodman–Cowin type material—theory and numerical results. Part. Sci. Technol. 17(1), 97–124 (1999)

    Article  ADS  Google Scholar 

  36. Svendsen, B., Hutter, K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33(14), 2021–2054 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, I.-S.: Continuum Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  38. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Volume 37 of Springer Tracts in Natural Philosophy. Springer, New York (1998)

    Book  MATH  Google Scholar 

  39. GeM software package, examples, and description (2007). http://math.usask.ca/~shevyakov/gem/

  40. Goodman, M., Cowin, S.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Heß.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 308 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heß, J., Cheviakov, A.F. A solution set-based entropy principle for constitutive modeling in mechanics. Continuum Mech. Thermodyn. 31, 775–806 (2019). https://doi.org/10.1007/s00161-018-0737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0737-4

Keywords

Navigation