Skip to main content
Log in

Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We give an a priori analysis of a semi-discrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (SIAM J Math Anal 46(5):3518–3539, 2014). The estimate we derive is optimal in the \(\hbox {L} _{\infty }(0,T;dG)\) norm for the strain and the \(\hbox {L} _{2}(0,T;dG)\) norm for the velocity, where dG is an appropriate mesh dependent \(\hbox {H} ^{1}\)-like space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne, R., Knowles, J.K.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal. 114(2), 119–154 (1991). doi:10.1007/BF00375400

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G., Ball, J.M.: Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity. J. Differ. Equ. 44(2), 306–341 (1982). doi:10.1016/0022-0396(82)90019-5. Special issue dedicated to J. P. LaSalle

  3. Arfken, G., Weber, H.: Mathematical Methods For Physicists International Student Edition. Elsevier Science (2005). http://books.google.de/books?id=tNtijk2iBSMC

  4. Braack, M., Prohl, A.: Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension. ESAIM: Math. Modell. Numer. Anal. 47, 401–420 (2013). doi:10.1051/m2an/2012032. http://www.esaim-m2an.org/article/S0764583X12000325

  5. Chalons, C., LeFloch, P.G.: High-order entropy-conservative schemes and kinetic relations for van der Waals fluids. J. Comput. Phys. 168(1), 184–206 (2001). doi:10.1006/jcph.2000.6690

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z., Chen, H.: Pointwise error estimates of discontinuous galerkin methods with penalty for second-order elliptic problems. SIAM Journal on Numerical Analysis 42(3), 1146–1166 (2005). http://www.jstor.org/stable/4101072

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, vol. 4. Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1978)

    Book  MATH  Google Scholar 

  8. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70(2), 167–179 (1979). doi:10.1007/BF00250353

    Article  MathSciNet  MATH  Google Scholar 

  9. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften, vol. 325, 3rd edn. Springer, Berlin (2010). doi:10.1007/978-3-642-04048-1

  10. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012). doi:10.1007/978-3-642-22980-0

  11. Diehl, D.: Higher order schemes for simulation of compressible liquid-vapor flows with phase change. Ph.D. thesis, Universität Freiburg (2007). http://www.freidok.uni-freiburg.de/volltexte/3762/

  12. DiPerna, R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137–188 (1979). doi:10.1512/iumj.1979.28.28011

    Article  MathSciNet  MATH  Google Scholar 

  13. Engel, P., Viorel, A., Rohde, C.: A low-order approximation for viscous-capillary phase transition dynamics. Port. Math. 70(4), 319–344 (2014). doi:10.4171/PM/1937

    Article  MathSciNet  MATH  Google Scholar 

  14. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  15. Georgoulis, E.H., Lakkis, O., Virtanen, J.M.: A posteriori error control for discontinuous Galerkin methods for parabolic problems. SIAM J. Numer. Anal. 49(2), 427–458 (2011). doi:10.1137/080722461

    Article  MathSciNet  MATH  Google Scholar 

  16. Giesselmann, J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity. SIAM J. Math. Anal. 46(5), 3518–3539 (2014). doi:10.1137/140951710

    Article  MathSciNet  MATH  Google Scholar 

  17. Giesselmann, J., Makridakis, C., Pryer, T.: Energy consistent discontinuous Galerkin methods for the Navier-Stokes-Korteweg system. Math. Comput. 83(289), 2071–2099 (2014). doi:10.1090/S0025-5718-2014-02792-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Giesselmann, J., Pryer, T.: Reduced relative entropy techniques for aposteriori analysis of multiphase problems in elastodynamics. Submitted–tech report available on ArXiV (2014)

  19. Hayes, B.T., Lefloch, P.G.: Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM J. Math. Anal 31(5), 941–991 (2000). doi:10.1137/S0036141097319826 (electronic)

  20. Jamet, D., Torres, D., Brackbill, J.: On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method. J. Comput. Phys 182, 262–276 (2002)

    Article  MATH  Google Scholar 

  21. Karakashian, O., Makridakis, C.: Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comput. 74(249), 85–102 (2005). doi:10.1090/S0025-5718-04-01654-0

    Article  MathSciNet  MATH  Google Scholar 

  22. LeFloch, P.G.: Hyperbolic Systems of Conservation Laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002). doi:10.1007/978-3-0348-8150-0. The theory of classical and nonclassical shock waves

  23. LeFloch, P.G., Thanh, M.D.: Non-classical Riemann solvers and kinetic relations. II. An hyperbolic-elliptic model of phase-transition dynamics. Proc. Roy. Soc. Edinb. Sect. A 132(1), 181–219 (2002). doi:10.1017/S030821050000158X

  24. Makridakis, C.G.: Finite element approximations of nonlinear elastic waves. Math. Comput. 61(204), 569–594 (1993). doi:10.2307/2153241

    Article  MathSciNet  MATH  Google Scholar 

  25. Ortner, C., Süli, E.: Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45(4), 1370–1397 (2007). doi:10.1137/06067119X

    Article  MathSciNet  MATH  Google Scholar 

  26. Pavel, N.H.: Nonlinear Evolution Operators and Semigroups. Lecture Notes in Mathematics, vol. 1260. Springer-Verlag, Berlin (1987)

  27. Slemrod, M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81(4), 301–315 (1983). doi:10.1007/BF00250857

    Article  MathSciNet  MATH  Google Scholar 

  28. Slemrod, M.: Dynamic phase transitions in a van der Waals fluid. J. Differ. Equ. 52(1), 1–23 (1984). doi:10.1016/0022-0396(84)90130-X

    Article  MathSciNet  MATH  Google Scholar 

  29. Tian, L., Xu, Y., Kuerten, J.G.M., Van der Vegt, J.J.W.: A local discontinuous galerkin method for the propagation of phase transition in solids and fluids. J. Sci. Comp. 59(3), 688–720 (2014). doi:10.1007/s10915-013-9778-9

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Pryer.

Additional information

Communicated by Ralf Hiptmair.

J.G. was partially supported by the German Research Foundation (DFG) via SFB TRR 75 ‘Tropfendynamische Prozesse unter extremen Umgebungsbedingungen’. T.P. was partially supported by the EPSRC grant EP/H024018/1 and an LMS travel grant 41214.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giesselmann, J., Pryer, T. Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics. Bit Numer Math 56, 99–127 (2016). https://doi.org/10.1007/s10543-015-0560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0560-2

Keywords

Mathematics Subject Classification

Navigation