Skip to main content
Log in

Numerical homogenization of elastic and thermal material properties for metal matrix composites (MMC)

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to \(500{\,}^\circ \mathrm {C}\), the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asad, M., Girardin, F., Mabrouki, T., Rigal, J.F.: Dry cutting study of an aluminium alloy (A2024-T351): a numerical and experimental approach. Int. J. Mater. Form. 1, 499–502 (2008)

    Article  Google Scholar 

  2. Böhm, H.J., Rasool, A.: Effects of particle shape on the thermoelastoplastic behavior of particle reinforced composites. Int. J. Solids Struct. 87, 90–101 (2016). doi:10.1016/j.ijsolstr.2016.02.028

    Article  Google Scholar 

  3. Böhm, H.J.: A short introduction to basic aspects of continuum micromechanics. Technical Report, CDLFMD Report, 020624, 31998 (1998)

  4. Böhm, H.J., Rammerstorfer, F.G., Weissenbek, E.: Some simple models for micromechanical investigations of fiber arrangement effects in MMCs. Comput. Mater. Sci. 1(3), 177–194 (1993). doi:10.1016/0927-0256(93)90010-K

    Article  Google Scholar 

  5. Brammer, J.A., Percival, C.M.: Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Exp. Mech. 10(6), 245–250 (1970)

    Article  Google Scholar 

  6. Budiansky, B.: Thermal and thermoelastic properties of isotropic composites. J. Compos. Mater. 4(3), 286–295 (1970). doi:10.1177/002199837000400301

    Article  ADS  Google Scholar 

  7. Dirrenberger, J., Forest, S., Jeulin, D.: Elastoplasticity of auxetic materials. Comput. Mater. Sci. 64, 57–61 (2012). doi:10.1016/j.commatsci.2012.03.036

    Article  Google Scholar 

  8. Fillep, S., Mergheim, J., Steinmann, P.: Computational modelling and homogenization of technical textiles. Eng. Struct. 50, 68–73 (2013)

    Article  MATH  Google Scholar 

  9. Fritzen, F., Forest, S., Kondo, D., Böhlke, T.: Computational homogenization of porous materials of green type. Comput. Mech. 52(1), 121–134 (2013). doi:10.1007/s00466-012-0801-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, W., Eckschlager, A., Böhm, H.J.: The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced mmcs. Compos. Sci. Technol. 61(11), 1581–1590 (2001). doi:10.1016/S0266-3538(01)00061-6

    Article  Google Scholar 

  11. Hasselman, D., Johnson, L.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21(6), 508–515 (1987). doi:10.1177/002199838702100602. Cited By 657

    Article  ADS  Google Scholar 

  12. Haupt, P.: Continuum Mechanics and Theory of Materials, Advanced Texts in Physics. Springer, Berlin (2002)

    Book  Google Scholar 

  13. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)

    Article  ADS  MATH  Google Scholar 

  14. Holzapfel, G.A.: Nonlinear Solid Mechanics—A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  15. Javili, A., McBride, A., Mergheim, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solids Struct. 50(2), 2561–2572 (2013)

    Article  Google Scholar 

  16. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  MATH  Google Scholar 

  17. Mandel, J.: Contribution téorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. In: Görtler, H. (ed.) Applied Mechanics: Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany), pp. 502–509 (1966)

  18. Mangipudi, K., Onck, P.: Multiscale modelling of damage and failure in two-dimensional metallic foams. J. Mech. Phys. Solids 59(7), 1437–1461 (2011). doi:10.1016/j.jmps.2011.02.008

    Article  ADS  MATH  Google Scholar 

  19. Moakher, M., Norris, A.N.: The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J. Elast. 85(3), 215–263 (2006). doi:10.1007/s10659-006-9082-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Munro, R.G.: Materials properties of a sintered \(\alpha \)-SiC. J. Phys. Chem. Ref. Data 26(5), 1195–1203 (1997)

    Article  ADS  Google Scholar 

  21. Nguyen, V.D., Béchet, E., Geuzaine, C., Noels, L.: Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput. Mater. Sci. 55, 390–406 (2012)

    Article  Google Scholar 

  22. Ottosen, N., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier Science, Amsterdam (2005)

    MATH  Google Scholar 

  23. Pfaller, S., Rahimi, M., Possart, G., Steinmann, P., Müller-Plathe, F., Böhm, M.C.: An arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites. Comput. Methods Appl. Mech. Eng. 260, 109–129 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 9(1), 49–58 (1929). doi:10.1002/zamm.19290090104

    MATH  Google Scholar 

  25. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010). doi:10.1016/j.actamat.2009.10.058

    Article  Google Scholar 

  26. Shilkrot, L., Miller, R., Curtin, W.: Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52(4), 755–787 (2004). doi:10.1016/j.jmps.2003.09.023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Song, M.: Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans. Nonferrous Metals Soc. China (English Edition) 19(6), 1400–1404 (2009). doi:10.1016/S1003-6326(09)60040-6

    Article  Google Scholar 

  28. Tadmor, E.B., Miller, R.E.: Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  29. Temizer, I., Wriggers, P.: Homogenization in finite thermoelasticity. J. Mech. Phys. Solids 59(2), 344–372 (2011). doi:10.1016/j.jmps.2010.10.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Voigt, W.: Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 274(12), 573–587 (1889). doi:10.1002/andp.18892741206

    Article  MATH  Google Scholar 

  31. Zhao, N., Yang, Yq, Han, M., Luo, X., Feng, Gh, Zhang, Rj: Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion-deformation heat-treatment. Trans. Nonferrous Met. Soc. China 22, 2226–2232 (2012)

    Article  Google Scholar 

  32. Ziegler, T., Neubrand, A., Piat, R.: Multiscale homogenization models for the elastic behaviour of metal/ceramic composites with lamellar domains. Compos. Sci. Technol. 70(4), 664–670 (2010). doi:10.1016/j.compscitech.2009.12.022

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German research foundation (DFG) for funding the project “Thermal effects when turning Al-MMC—experiments and simulations AU 185/26, STE 544/42” within the priority program SPP 1480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schindler.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindler, S., Mergheim, J., Zimmermann, M. et al. Numerical homogenization of elastic and thermal material properties for metal matrix composites (MMC). Continuum Mech. Thermodyn. 29, 51–75 (2017). https://doi.org/10.1007/s00161-016-0515-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0515-0

Keywords

Navigation